侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

在python中利用最小二乘拟合二次抛物线函数的方法

Python  /  管理员 发布于 7年前   342

1、最小二乘也可以拟合二次函数

我们都知道用最小二乘拟合线性函数没有问题,那么能不能拟合二次函数甚至更高次的函数呢?答案当然是可以的。下面我们就来试试用最小二乘来拟合抛物线形状的的图像。

对于二次函数来说,一般形状为 f(x) = a*x*x+b*x+c,其中a,b,c为三个我们需要求解的参数。为了确定a、b、c,我们需要根据给定的样本,然后通过调整这些参数,知道最后找出一组参数a、b、c,使这些所有的样本点距离f(x)的距离平方和最小。用什么方法来调整这些参数呢?最常见的自然就是我们的梯度下降喽。

spicy库中有名为leastsq的方法,只需要输入一系列样本点,给出待求函数的基本形状,就可以针对上述问题求解了。

2、抛物线拟合源码

#!/usr/bin/env python# coding:utf-8import numpy as npimport matplotlib.pyplot as pltfrom scipy.optimize import leastsq# 待拟合的数据X = np.array([1,2,3,4,5,6])Y=np.array([9.1,18.3,32,47,69.5,94.8])# 二次函数的标准形式def func(params, x): a, b, c = params return a * x * x + b * x + c# 误差函数,即拟合曲线所求的值与实际值的差def error(params, x, y): return func(params, x) - y# 对参数求解def slovePara(): p0 = [10, 10, 10] Para = leastsq(error, p0, args=(X, Y)) return Para# 输出最后的结果def solution(): Para = slovePara() a, b, c = Para[0] print "a=",a," b=",b," c=",c print "cost:" + str(Para[1]) print "求解的曲线是:" print("y="+str(round(a,2))+"x*x+"+str(round(b,2))+"x+"+str(c)) plt.figure(figsize=(8,6)) plt.scatter(X, Y, color="green", label="sample data", linewidth=2) # 画拟合直线 x=np.linspace(0,12,100) ##在0-15直接画100个连续点 y=a*x*x+b*x+c ##函数式 plt.plot(x,y,color="red",label="solution line",linewidth=2) plt.legend() #绘制图例 plt.show()solution()

上面的代码中,稍微注意的是如下几点:

1.func是待拟合的曲线的形状。本例中为二次函数的标准形式。

2.error为误差函数。很多同学会问不应该是最小平方和吗?为什么不是func(params, x) - y * func(params, x) - y?原因是名为lasts的方法中帮我们做了。看一下sklearn中源码的注释就知道什么情况了:

Minimize the sum of squares of a set of equations. x = arg min(sum(func(y)**2,axis=0))   y

二次方的操作在源码中帮我们实现了。

3.p0里放的是a、b、c的初始值,这个值可以随意指定。往后随着迭代次数增加,a、b、c将会不断变化,使得error函数的值越来越小。

4.leastsq的返回值是一个tuple,它里面有两个元素,第一个元素是a、b、c的求解结果,第二个则为cost function的大小!

3.程序的最终结果与拟合曲线

程序最终的输出结果:

a= 2.06607141425 b= 2.5975001036 c= 4.68999985496cost:1求解的曲线是:y=2.07x*x+2.6x+4.68999985496

最终的拟合曲线:

4、模拟其他曲线

leastsq函数除了可以模拟线性函数二次函数等多项式,还适用于任何波形的模拟。

比如方波:

def square_wave(x,p): a, b, c, T = p y = np.where(np.mod(x-b,T)<T/2, 1+c/a, 0) y = np.where(np.mod(x-b,T)>T/2, -1+c/a, y) return a*y

比如高斯分布:

def gaussian_wave(x,p): a, b, c, d= p return a*np.exp(-(x-b)**2/(2*c**2))+d

只要将上面代码中的func换成对应的函数即可!

以上这篇在python中利用最小二乘拟合二次抛物线函数的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


  • 上一条:
    使用python绘制3维正态分布图的方法
    下一条:
    对python指数、幂数拟合curve_fit详解
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在windows10中升级go版本至1.24后LiteIDE的Ctrl+左击无法跳转问题解决方案(0个评论)
    • 智能合约Solidity学习CryptoZombie第四课:僵尸作战系统(0个评论)
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客