侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

python实现三次样条插值

Python  /  管理员 发布于 7年前   440

本文实例为大家分享了python实现三次样条插值的具体代码,供大家参考,具体内容如下

函数:

算法分析

三次样条插值。就是在分段插值的一种情况。

要求:

  • 在每个分段区间上是三次多项式(这就是三次样条中的三次的来源)
  • 在整个区间(开区间)上二阶导数连续(当然啦,这里主要是强调在节点上的连续)
  • 加上边界条件。边界条件只需要给出两个方程。构建一个方程组,就可以解出所有的参数。

这里话,根据第一类样条作为边界。(就是知道两端节点的导数数值,然后来做三次样条插值)

但是这里也分为两种情况,分别是这个数值是随便给的一个数,还是说根据函数的在对应点上数值给出。

情况一:两边导数数值给出

这里假设数值均为1。即 f′(x0)=f′(xn)=f′(xn)=1的情况。

情况一图像


情况一代码

import numpy as npfrom sympy import *import matplotlib.pyplot as pltdef f(x): return 1 / (1 + x ** 2)def cal(begin, end, i): by = f(begin) ey = f(end) I = Ms[i] * ((end - n) ** 3) / 6 + Ms[i + 1] * ((n - begin) ** 3) / 6 + (by - Ms[i] / 6) * (end - n) + (  ey - Ms[i + 1] / 6) * (n - begin) return Idef ff(x): # f[x0, x1, ..., xk] ans = 0 for i in range(len(x)): temp = 1 for j in range(len(x)):  if i != j:  temp *= (x[i] - x[j]) ans += f(x[i]) / temp return ansdef calM(): lam = [1] + [1 / 2] * 9 miu = [1 / 2] * 9 + [1] # Y = 1 / (1 + n ** 2) # df = diff(Y, n) x = np.array(range(11)) - 5 # ds = [6 * (ff(x[0:2]) - df.subs(n, x[0]))] ds = [6 * (ff(x[0:2]) - 1)] for i in range(9): ds.append(6 * ff(x[i: i + 3])) # ds.append(6 * (df.subs(n, x[10]) - ff(x[-2:]))) ds.append(6 * (1 - ff(x[-2:]))) Mat = np.eye(11, 11) * 2 for i in range(11): if i == 0:  Mat[i][1] = lam[i] elif i == 10:  Mat[i][9] = miu[i - 1] else:  Mat[i][i - 1] = miu[i - 1]  Mat[i][i + 1] = lam[i] ds = np.mat(ds) Mat = np.mat(Mat) Ms = ds * Mat.I return Ms.tolist()[0]def calnf(x): nf = [] for i in range(len(x) - 1): nf.append(cal(x[i], x[i + 1], i)) return nfdef calf(f, x): y = [] for i in x: y.append(f.subs(n, i)) return ydef nfSub(x, nf): tempx = np.array(range(11)) - 5 dx = [] for i in range(10): labelx = [] for j in range(len(x)):  if x[j] >= tempx[i] and x[j] < tempx[i + 1]:  labelx.append(x[j])  elif i == 9 and x[j] >= tempx[i] and x[j] <= tempx[i + 1]:  labelx.append(x[j]) dx = dx + calf(nf[i], labelx) return np.array(dx)def draw(nf): plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False x = np.linspace(-5, 5, 101) y = f(x) Ly = nfSub(x, nf) plt.plot(x, y, label='原函数') plt.plot(x, Ly, label='三次样条插值函数') plt.xlabel('x') plt.ylabel('y') plt.legend() plt.savefig('1.png') plt.show()def lossCal(nf): x = np.linspace(-5, 5, 101) y = f(x) Ly = nfSub(x, nf) Ly = np.array(Ly) temp = Ly - y temp = abs(temp) print(temp.mean())if __name__ == '__main__': x = np.array(range(11)) - 5 y = f(x) n, m = symbols('n m') init_printing(use_unicode=True) Ms = calM() nf = calnf(x) draw(nf) lossCal(nf)

情况二:两边导数数值由函数本身算出

这里假设数值均为1。即 f′(xi)=S′(xi)(i=0,n)f′(xi)=S′(xi)(i=0,n)的情况。

情况二图像

情况二代码

import numpy as npfrom sympy import *import matplotlib.pyplot as pltdef f(x): return 1 / (1 + x ** 2)def cal(begin, end, i): by = f(begin) ey = f(end) I = Ms[i] * ((end - n) ** 3) / 6 + Ms[i + 1] * ((n - begin) ** 3) / 6 + (by - Ms[i] / 6) * (end - n) + (  ey - Ms[i + 1] / 6) * (n - begin) return Idef ff(x): # f[x0, x1, ..., xk] ans = 0 for i in range(len(x)): temp = 1 for j in range(len(x)):  if i != j:  temp *= (x[i] - x[j]) ans += f(x[i]) / temp return ansdef calM(): lam = [1] + [1 / 2] * 9 miu = [1 / 2] * 9 + [1] Y = 1 / (1 + n ** 2) df = diff(Y, n) x = np.array(range(11)) - 5 ds = [6 * (ff(x[0:2]) - df.subs(n, x[0]))] # ds = [6 * (ff(x[0:2]) - 1)] for i in range(9): ds.append(6 * ff(x[i: i + 3])) ds.append(6 * (df.subs(n, x[10]) - ff(x[-2:]))) # ds.append(6 * (1 - ff(x[-2:]))) Mat = np.eye(11, 11) * 2 for i in range(11): if i == 0:  Mat[i][1] = lam[i] elif i == 10:  Mat[i][9] = miu[i - 1] else:  Mat[i][i - 1] = miu[i - 1]  Mat[i][i + 1] = lam[i] ds = np.mat(ds) Mat = np.mat(Mat) Ms = ds * Mat.I return Ms.tolist()[0]def calnf(x): nf = [] for i in range(len(x) - 1): nf.append(cal(x[i], x[i + 1], i)) return nfdef calf(f, x): y = [] for i in x: y.append(f.subs(n, i)) return ydef nfSub(x, nf): tempx = np.array(range(11)) - 5 dx = [] for i in range(10): labelx = [] for j in range(len(x)):  if x[j] >= tempx[i] and x[j] < tempx[i + 1]:  labelx.append(x[j])  elif i == 9 and x[j] >= tempx[i] and x[j] <= tempx[i + 1]:  labelx.append(x[j]) dx = dx + calf(nf[i], labelx) return np.array(dx)def draw(nf): plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False x = np.linspace(-5, 5, 101) y = f(x) Ly = nfSub(x, nf) plt.plot(x, y, label='原函数') plt.plot(x, Ly, label='三次样条插值函数') plt.xlabel('x') plt.ylabel('y') plt.legend() plt.savefig('1.png') plt.show()def lossCal(nf): x = np.linspace(-5, 5, 101) y = f(x) Ly = nfSub(x, nf) Ly = np.array(Ly) temp = Ly - y temp = abs(temp) print(temp.mean())if __name__ == '__main__': x = np.array(range(11)) - 5 y = f(x) n, m = symbols('n m') init_printing(use_unicode=True) Ms = calM() nf = calnf(x) draw(nf) lossCal(nf)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    解决Python中list里的中文输出到html模板里的问题
    下一条:
    Python命名空间的本质和加载顺序
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • PHP 8.4 Alpha 1现已发布!(0个评论)
    • Laravel 11.15版本发布 - Eloquent Builder中添加的泛型(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客