侯体宗的博客
  • 首页
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

python+numpy+matplotalib实现梯度下降法

Python  /  管理员 发布于 7年前   185

这个阶段一直在做和梯度一类算法相关的东西,索性在这儿做个汇总:

一、算法论述

梯度下降法(gradient  descent)别名最速下降法(曾经我以为这是两个不同的算法-.-),是用来求解无约束最优化问题的一种常用算法。下面以求解线性回归为题来叙述:

设:一般的线性回归方程(拟合函数)为:(其中的值为1)

则这一组向量参数选择的好与坏就需要一个机制来评估,据此我们提出了其损失函数为(选择均方误差):

我们现在的目的就是使得损失函数取得最小值,即目标函数为:

如果的值取到了0,意味着我们构造出了极好的拟合函数,也即选择出了最好的值,但这基本是达不到的,我们只能使得其无限的接近于0,当满足一定精度时停止迭代。

那么问题来了如何调整使得取得的值越来越小呢?方法很多,此处以梯度下降法为例:

分为两步:(1)初始化的值。

(2)改变的值,使得按梯度下降的方向减少。

值的更新使用如下的方式来完成:

其中为步长因子,这里我们取定值,但注意如果取得过小会导致收敛速度过慢,过大则损失函数可能不会收敛,甚至逐渐变大,可以在下述的代码中修改的值来进行验证。后面我会再写一篇关于随机梯度下降法的文章,其实与梯度下降法最大的不同就在于一个求和符号。

二、代码实现

import numpy as npimport matplotlib.pyplot as pltfrom mpl_toolkits.mplot3d import axes3dfrom matplotlib import style  #构造数据def get_data(sample_num=10000): """ 拟合函数为 y = 5*x1 + 7*x2 :return: """ x1 = np.linspace(0, 9, sample_num) x2 = np.linspace(4, 13, sample_num) x = np.concatenate(([x1], [x2]), axis=0).T y = np.dot(x, np.array([5, 7]).T)  return x, y#梯度下降法def GD(samples, y, step_size=0.01, max_iter_count=1000): """ :param samples: 样本 :param y: 结果value :param step_size: 每一接迭代的步长 :param max_iter_count: 最大的迭代次数 :param batch_size: 随机选取的相对于总样本的大小 :return: """ #确定样本数量以及变量的个数初始化theta值 m, var = samples.shape theta = np.zeros(2) y = y.flatten() #进入循环内 print(samples) loss = 1 iter_count = 0 iter_list=[] loss_list=[] theta1=[] theta2=[] #当损失精度大于0.01且迭代此时小于最大迭代次数时,进行 while loss > 0.001 and iter_count < max_iter_count: loss = 0 #梯度计算 theta1.append(theta[0]) theta2.append(theta[1]) for i in range(m):  h = np.dot(theta,samples[i].T)  #更新theta的值,需要的参量有:步长,梯度  for j in range(len(theta)):  theta[j] = theta[j] - step_size*(1/m)*(h - y[i])*samples[i,j] #计算总体的损失精度,等于各个样本损失精度之和 for i in range(m):  h = np.dot(theta.T, samples[i])  #每组样本点损失的精度  every_loss = (1/(var*m))*np.power((h - y[i]), 2)  loss = loss + every_loss  print("iter_count: ", iter_count, "the loss:", loss)  iter_list.append(iter_count) loss_list.append(loss)  iter_count += 1 plt.plot(iter_list,loss_list) plt.xlabel("iter") plt.ylabel("loss") plt.show() return theta1,theta2,theta,loss_listdef painter3D(theta1,theta2,loss): style.use('ggplot') fig = plt.figure() ax1 = fig.add_subplot(111, projection='3d') x,y,z = theta1,theta2,loss ax1.plot_wireframe(x,y,z, rstride=5, cstride=5) ax1.set_xlabel("theta1") ax1.set_ylabel("theta2") ax1.set_zlabel("loss") plt.show()def predict(x, theta): y = np.dot(theta, x.T) return y if __name__ == '__main__': samples, y = get_data() theta1,theta2,theta,loss_list = GD(samples, y) print(theta) # 会很接近[5, 7]  painter3D(theta1,theta2,loss_list) predict_y = predict(theta, [7,8]) print(predict_y)

三、绘制的图像如下:

迭代次数与损失精度间的关系图如下:步长为0.01

变量、与损失函数loss之间的关系:(从初始化之后会一步步收敛到loss满足精度,之后、会变的稳定下来)

下面我们来看一副当步长因子变大后的图像:步长因子为0.5(很明显其收敛速度变缓了)

当步长因子设置为1.8左右时,其损失值已经开始震荡

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    opencv python 图像去噪的实现方法
    下一条:
    python实现随机梯度下降法
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在windows10中升级go版本至1.24后LiteIDE的Ctrl+左击无法跳转问题解决方案(0个评论)
    • 智能合约Solidity学习CryptoZombie第四课:僵尸作战系统(0个评论)
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客