Python使用numpy产生正态分布随机数的向量或矩阵操作示例
Python  /  管理员 发布于 7年前   250
本文实例讲述了Python使用numpy产生正态分布随机数的向量或矩阵操作。分享给大家供大家参考,具体如下:
简单来说,正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。一般的正态分布可以通过标准正态分布配合数学期望向量和协方差矩阵得到。如下代码,可以得到满足一维和二维正态分布的样本。
示例1(一维正态分布):
# coding=utf-8'''作者:采石工来源:知乎'''import numpy as npfrom numpy.linalg import choleskyimport matplotlib.pyplot as pltsampleNo = 1000;# 一维正态分布# 下面三种方式是等效的mu = 3sigma = 0.1np.random.seed(0)s = np.random.normal(mu, sigma, sampleNo )plt.subplot(141)plt.hist(s, 30, normed=True)np.random.seed(0)s = sigma * np.random.randn(sampleNo ) + muplt.subplot(142)plt.hist(s, 30, normed=True)np.random.seed(0)s = sigma * np.random.standard_normal(sampleNo ) + muplt.subplot(143)plt.hist(s, 30, normed=True)# 二维正态分布mu = np.array([[1, 5]])Sigma = np.array([[1, 0.5], [1.5, 3]])R = cholesky(Sigma)s = np.dot(np.random.randn(sampleNo, 2), R) + muplt.subplot(144)# 注意绘制的是散点图,而不是直方图plt.plot(s[:,0],s[:,1],'+')plt.show()
运行结果:
示例2(正态分布):
#-*- coding:utf-8 -*-# Python实现正态分布# 绘制正态分布概率密度函数import numpy as npimport matplotlib.pyplot as pltimport mathu = 0 # 均值μu01 = -2sig = math.sqrt(0.2) # 标准差δx = np.linspace(u - 3*sig, u + 3*sig, 50)y_sig = np.exp(-(x - u) ** 2 /(2* sig **2))/(math.sqrt(2*math.pi)*sig)print xprint "="*20print y_sigplt.plot(x, y_sig, "r-", linewidth=2)plt.grid(True)plt.show()
运行结果:
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》
希望本文所述对大家Python程序设计有所帮助。
122 在
学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..123 在
Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..原梓番博客 在
在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..博主 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..1111 在
佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
Copyright·© 2019 侯体宗版权所有·
粤ICP备20027696号