侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

python中scikit-learn机器代码实例

Python  /  管理员 发布于 7年前   171

我们给大家带来了关于学习python中scikit-learn机器代码的相关具体实例,以下就是全部代码内容:

# -*- coding: utf-8 -*- import numpyfrom sklearn import metricsfrom sklearn.svm import LinearSVCfrom sklearn.naive_bayes import MultinomialNBfrom sklearn import linear_modelfrom sklearn.datasets import load_irisfrom sklearn.cross_validation import train_test_splitfrom sklearn.preprocessing import OneHotEncoder, StandardScalerfrom sklearn import cross_validationfrom sklearn import preprocessing#import iris_data def load_data():  iris = load_iris()  x, y = iris.data, iris.target  x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.20, random_state=42)  return x_train,y_train,x_test,y_test def train_clf3(train_data, train_tags):  clf = LinearSVC(C=1100.0)#default with 'rbf'   clf.fit(train_data,train_tags)  return clf def train_clf(train_data, train_tags):  clf = MultinomialNB(alpha=0.01)  print numpy.asarray(train_tags)  clf.fit(train_data, numpy.asarray(train_tags))  return clf def evaluate(actual, pred):  m_precision = metrics.precision_score(actual, pred)  m_recall = metrics.recall_score(actual, pred)  print 'precision:{0:.3f}'.format(m_precision)  print 'recall:{0:0.3f}'.format(m_recall)  print 'f1-score:{0:.8f}'.format(metrics.f1_score(actual,pred)); x_train,y_train,x_test,y_test = load_data() clf = train_clf(x_train, y_train) pred = clf.predict(x_test)evaluate(numpy.asarray(y_test), pred)print metrics.classification_report(y_test, pred)  使用自定义数据# coding: utf-8 import numpyfrom sklearn import metricsfrom sklearn.feature_extraction.text import HashingVectorizerfrom sklearn.feature_extraction.text import TfidfVectorizerfrom sklearn.naive_bayes import MultinomialNBfrom sklearn.feature_extraction.text import CountVectorizer,TfidfTransformerfrom sklearn.neighbors import KNeighborsClassifierfrom sklearn.svm import SVCfrom sklearn.svm import LinearSVCimport codecsfrom sklearn.ensemble import RandomForestClassifierfrom sklearn import cross_validationfrom sklearn import linear_model train_corpus = [   '我们 我们 好孩子 认证 。 就是',   '我们 好孩子 认证 。 中国',   '我们 好孩子 认证 。 孤独',   '我们 好孩子 认证 。', ] test_corpus = [   '我 菲律宾 韩国',   '我们 好孩子 认证 。 中国', ] def input_data(train_file, test_file):  train_words = []  train_tags = []  test_words = []  test_tags = []  f1 = codecs.open(train_file,'r','utf-8','ignore')  for line in f1:    tks = line.split(':', 1)    word_list = tks[1]    word_array = word_list[1:(len(word_list)-3)].split(", ")    train_words.append(" ".join(word_array))    train_tags.append(tks[0])  f2 = codecs.open(test_file,'r','utf-8','ignore')  for line in f2:    tks = line.split(':', 1)    word_list = tks[1]    word_array = word_list[1:(len(word_list)-3)].split(", ")    test_words.append(" ".join(word_array))    test_tags.append(tks[0])  return train_words, train_tags, test_words, test_tags  def vectorize(train_words, test_words):  #v = HashingVectorizer(n_features=25000, non_negative=True)  v = HashingVectorizer(non_negative=True)  #v = CountVectorizer(min_df=1)  train_data = v.fit_transform(train_words)  test_data = v.fit_transform(test_words)  return train_data, test_data def vectorize1(train_words, test_words):  tv = TfidfVectorizer(sublinear_tf = False,use_idf=True);  train_data = tv.fit_transform(train_words);  tv2 = TfidfVectorizer(vocabulary = tv.vocabulary_);  test_data = tv2.fit_transform(test_words);  return train_data, test_data  def vectorize2(train_words, test_words):  count_v1= CountVectorizer(stop_words = 'english', max_df = 0.5);   counts_train = count_v1.fit_transform(train_words);      count_v2 = CountVectorizer(vocabulary=count_v1.vocabulary_);  counts_test = count_v2.fit_transform(test_words);     tfidftransformer = TfidfTransformer();     train_data = tfidftransformer.fit(counts_train).transform(counts_train);   test_data = tfidftransformer.fit(counts_test).transform(counts_test);  return train_data, test_data def evaluate(actual, pred):  m_precision = metrics.precision_score(actual, pred)  m_recall = metrics.recall_score(actual, pred)  print 'precision:{0:.3f}'.format(m_precision)  print 'recall:{0:0.3f}'.format(m_recall)  print 'f1-score:{0:.8f}'.format(metrics.f1_score(actual,pred));  def train_clf(train_data, train_tags):  clf = MultinomialNB(alpha=0.01)  clf.fit(train_data, numpy.asarray(train_tags))  return clf  def train_clf1(train_data, train_tags):  #KNN Classifier  clf = KNeighborsClassifier()#default with k=5   clf.fit(train_data, numpy.asarray(train_tags))   return clf def train_clf2(train_data, train_tags):  clf = linear_model.LogisticRegression(C=1e5)   clf.fit(train_data,train_tags)  return clf def train_clf3(train_data, train_tags):  clf = LinearSVC(C=1100.0)#default with 'rbf'   clf.fit(train_data,train_tags)  return clf def train_clf4(train_data, train_tags):  """  随机森林,不可使用稀疏矩阵  """  clf = RandomForestClassifier(n_estimators=10)  clf.fit(train_data.todense(),train_tags)  return clf #使用codecs逐行读取def codecs_read_label_line(filename):  label_list=[]  f = codecs.open(filename,'r','utf-8','ignore')  line = f.readline()  while line:    #label_list.append(line[0:len(line)-2])    label_list.append(line[0:len(line)-1])    line = f.readline()  f.close()  return label_list def save_test_features(test_url, test_label):  test_feature_list = codecs_read_label_line('test.dat')  fw = open('test_labeded.dat',"w+")    for (url,label) in zip(test_feature_list,test_label):    fw.write(url+'\t'+label)    fw.write('\n')  fw.close() def main():  train_file = u'..\\file\\py_train.txt'  test_file = u'..\\file\\py_test.txt'  train_words, train_tags, test_words, test_tags = input_data(train_file, test_file)  #print len(train_words), len(train_tags), len(test_words), len(test_words),     train_data, test_data = vectorize1(train_words, test_words)  print type(train_data)  print train_data.shape  print test_data.shape  print test_data[0].shape  print numpy.asarray(test_data[0])    clf = train_clf3(train_data, train_tags)    scores = cross_validation.cross_val_score(  clf, train_data, train_tags, cv=5, scoring="f1_weighted")  print scores   #predicted = cross_validation.cross_val_predict(clf, train_data,train_tags, cv=5)    '''    '''  pred = clf.predict(test_data)  error_list=[]  for (true_tag,predict_tag) in zip(test_tags,pred):    if true_tag != predict_tag:      print true_tag,predict_tag      error_list.append(true_tag+' '+predict_tag)  print len(error_list)  evaluate(numpy.asarray(test_tags), pred)  '''  #输出打标签结果  test_feature_list = codecs_read_label_line('test.dat')  save_test_features(test_feature_list, pred)  '''   if __name__ == '__main__':  main() 


  • 上一条:
    Anaconda下配置python+opencv+contribx的实例讲解
    下一条:
    Python字符串、整数、和浮点型数相互转换实例
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • PHP 8.4 Alpha 1现已发布!(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客