侯体宗的博客
  • 首页
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

教你利用Python玩转histogram直方图的五种方法

Python  /  管理员 发布于 7年前   336

直方图

直方图是一个可以快速展示数据概率分布的工具,直观易于理解,并深受数据爱好者的喜爱。大家平时可能见到最多就是 matplotlib,seaborn 等高级封装的库包,类似以下这样的绘图。

本篇博主将要总结一下使用Python绘制直方图的所有方法,大致可分为三大类(详细划分是五类,参照文末总结):

  • 纯Python实现直方图,不使用任何第三方库
  • 使用Numpy来创建直方图总结数据
  • 使用matplotlib,pandas,seaborn绘制直方图

下面,我们来逐一介绍每种方法的来龙去脉。

纯Python实现histogram

当准备用纯Python来绘制直方图的时候,最简单的想法就是将每个值出现的次数以报告形式展示。这种情况下,使用 字典 来完成这个任务是非常合适的,我们看看下面代码是如何实现的。

>>> a = (0, 1, 1, 1, 2, 3, 7, 7, 23)>>> def count_elements(seq) -> dict:... """Tally elements from `seq`."""... hist = {}... for i in seq:...  hist[i] = hist.get(i, 0) + 1... return hist>>> counted = count_elements(a)>>> counted{0: 1, 1: 3, 2: 1, 3: 1, 7: 2, 23: 1}

我们看到,count_elements() 返回了一个字典,字典里出现的键为目标列表里面的所有唯一数值,而值为所有数值出现的频率次数。hist[i] = hist.get(i, 0) + 1 实现了每个数值次数的累积,每次加一。

实际上,这个功能可以用一个Python的标准库 collection.Counter 类来完成,它兼容Pyhont 字典并覆盖了字典的 .update() 方法。

>>> from collections import Counter>>> recounted = Counter(a)>>> recountedCounter({0: 1, 1: 3, 3: 1, 2: 1, 7: 2, 23: 1})

可以看到这个方法和前面我们自己实现的方法结果是一样的,我们也可以通过 collection.Counter 来检验两种方法得到的结果是否相等。

>>> recounted.items() == counted.items()True

我们利用上面的函数重新再造一个轮子 ASCII_histogram,并最终通过Python的输出格式format来实现直方图的展示,代码如下:

def ascii_histogram(seq) -> None: """A horizontal frequency-table/histogram plot.""" counted = count_elements(seq) for k in sorted(counted): print('{0:5d} {1}'.format(k, '+' * counted[k]))

这个函数按照数值大小顺序进行绘图,数值出现次数用 (+) 符号表示。在字典上调用 sorted() 将会返回一个按键顺序排列的列表,然后就可以获取相应的次数 counted[k]  。

>>> import random>>> random.seed(1)>>> vals = [1, 3, 4, 6, 8, 9, 10]>>> # `vals` 里面的数字将会出现5到15次>>> freq = (random.randint(5, 15) for _ in vals)>>> data = []>>> for f, v in zip(freq, vals):... data.extend([v] * f)>>> ascii_histogram(data) 1 +++++++ 3 ++++++++++++++ 4 ++++++ 6 +++++++++ 8 ++++++ 9 ++++++++++++ 10 ++++++++++++

这个代码中,vals内的数值是不重复的,并且每个数值出现的频数是由我们自己定义的,在5和15之间随机选择。然后运用我们上面封装的函数,就得到了纯Python版本的直方图展示。

总结:纯python实现频数表(非标准直方图),可直接使用collection.Counter方法实现。

使用Numpy实现histogram

以上是使用纯Python来完成的简单直方图,但是从数学意义上来看,直方图是分箱到频数的一种映射,它可以用来估计变量的概率密度函数的。而上面纯Python实现版本只是单纯的频数统计,不是真正意义上的直方图。

因此,我们从上面实现的简单直方图继续往下进行升级。一个真正的直方图首先应该是将变量分区域(箱)的,也就是分成不同的区间范围,然后对每个区间内的观测值数量进行计数。恰巧,Numpy的直方图方法就可以做到这点,不仅仅如此,它也是后面将要提到的matplotlib和pandas使用的基础。

举个例子,来看一组从拉普拉斯分布上提取出来的浮点型样本数据。这个分布比标准正态分布拥有更宽的尾部,并有两个描述参数(location和scale):

>>> import numpy as np>>> np.random.seed(444)>>> np.set_printoptions(precision=3)>>> d = np.random.laplace(loc=15, scale=3, size=500)>>> d[:5]array([18.406, 18.087, 16.004, 16.221, 7.358])

由于这是一个连续型的分布,对于每个单独的浮点值(即所有的无数个小数位置)并不能做很好的标签(因为点实在太多了)。但是,你可以将数据做 分箱 处理,然后统计每个箱内观察值的数量,这就是真正的直方图所要做的工作。

下面我们看看是如何用Numpy来实现直方图频数统计的。

>>> hist, bin_edges = np.histogram(d)>>> histarray([ 1, 0, 3, 4, 4, 10, 13, 9, 2, 4])>>> bin_edgesarray([ 3.217, 5.199, 7.181, 9.163, 11.145, 13.127, 15.109, 17.091, 19.073, 21.055, 23.037])

这个结果可能不是很直观。来说一下,np.histogram() 默认地使用10个相同大小的区间(箱),然后返回一个元组(频数,分箱的边界),如上所示。要注意的是:这个边界的数量是要比分箱数多一个的,可以简单通过下面代码证实。

>>> hist.size, bin_edges.size(10, 11)

那问题来了,Numpy到底是如何进行分箱的呢?只是通过简单的 np.histogram() 就可以完成了,但具体是如何实现的我们仍然全然不知。下面让我们来将 np.histogram() 的内部进行解剖,看看到底是如何实现的(以最前面提到的a列表为例)。

>>> # 取a的最小值和最大值>>> first_edge, last_edge = a.min(), a.max()>>> n_equal_bins = 10 # NumPy得默认设置,10个分箱>>> bin_edges = np.linspace(start=first_edge, stop=last_edge,...    num=n_equal_bins + 1, endpoint=True)...>>> bin_edgesarray([ 0. , 2.3, 4.6, 6.9, 9.2, 11.5, 13.8, 16.1, 18.4, 20.7, 23. ])

解释一下:首先获取a列表的最小值和最大值,然后设置默认的分箱数量,最后使用Numpy的 linspace 方法进行数据段分割。分箱区间的结果也正好与实际吻合,0到23均等分为10份,23/10,那么每份宽度为2.3。

除了np.histogram之外,还存在其它两种可以达到同样功能的方法:np.bincount() 和 np.searchsorted() ,下面看看代码以及比较结果。

>>> bcounts = np.bincount(a)>>> hist, _ = np.histogram(a, range=(0, a.max()), bins=a.max() + 1)>>> np.array_equal(hist, bcounts)True>>> # Reproducing `collections.Counter`>>> dict(zip(np.unique(a), bcounts[bcounts.nonzero()])){0: 1, 1: 3, 2: 1, 3: 1, 7: 2, 23: 1}

总结:通过Numpy实现直方图,可直接使用np.histogram()或者np.bincount() 。

使用Matplotlib和Pandas可视化Histogram

从上面的学习,我们看到了如何使用Python的基础工具搭建一个直方图,下面我们来看看如何使用更为强大的Python库包来完成直方图。Matplotlib基于Numpy的histogram进行了多样化的封装并提供了更加完善的可视化功能。

import matplotlib.pyplot as plt# matplotlib.axes.Axes.hist() 方法的接口n, bins, patches = plt.hist(x=d, bins='auto', color='#0504aa',    alpha=0.7, rwidth=0.85)plt.grid(axis='y', alpha=0.75)plt.xlabel('Value')plt.ylabel('Frequency')plt.title('My Very Own Histogram')plt.text(23, 45, r'$\mu=15, b=3$')maxfreq = n.max()# 设置y轴的上限plt.ylim(ymax=np.ceil(maxfreq / 10) * 10 if maxfreq % 10 else maxfreq + 10)


之前我们的做法是,在x轴上定义了分箱边界,y轴是相对应的频数,不难发现我们都是手动定义了分箱的数目。但是在以上的高级方法中,我们可以通过设置 bins='auto' 自动在写好的两个算法中择优选择并最终算出最适合的分箱数。这里,算法的目的就是选择出一个合适的区间(箱)宽度,并生成一个最能代表数据的直方图来。

如果使用Python的科学计算工具实现,那么可以使用Pandas的 Series.histogram() ,并通过 matplotlib.pyplot.hist() 来绘制输入Series的直方图,如下代码所示。

import pandas as pdsize, scale = 1000, 10commutes = pd.Series(np.random.gamma(scale, size=size) ** 1.5)commutes.plot.hist(grid=True, bins=20, rwidth=0.9,     color='#607c8e')plt.title('Commute Times for 1,000 Commuters')plt.xlabel('Counts')plt.ylabel('Commute Time')plt.grid(axis='y', alpha=0.75)


pandas.DataFrame.histogram() 的用法与Series是一样的,但生成的是对DataFrame数据中的每一列的直方图。

总结:通过pandas实现直方图,可使用Seris.plot.hist() ,DataFrame.plot.hist() ,matplotlib实现直方图可以用matplotlib.pyplot.hist() 。

绘制核密度估计(KDE)

KDE(Kernel density estimation)是核密度估计的意思,它用来估计随机变量的概率密度函数,可以将数据变得更平缓。

使用Pandas库的话,你可以使用 plot.kde() 创建一个核密度的绘图,plot.kde() 对于 Series和DataFrame数据结构都适用。但是首先,我们先生成两个不同的数据样本作为比较(两个正太分布的样本):

>>> # 两个正太分布的样本>>> means = 10, 20>>> stdevs = 4, 2>>> dist = pd.DataFrame(...  np.random.normal(loc=means, scale=stdevs, size=(1000, 2)),...  columns=['a', 'b'])>>> dist.agg(['min', 'max', 'mean', 'std']).round(decimals=2)   a  bmin -1.57 12.46max 25.32 26.44mean 10.12 19.94std 3.94 1.94

以上看到,我们生成了两组正态分布样本,并且通过一些描述性统计参数对两组数据进行了简单的对比。现在,我们可以在同一个Matplotlib轴上绘制每个直方图以及对应的kde,使用pandas的plot.kde()的好处就是:它会自动的将所有列的直方图和kde都显示出来,用起来非常方便,具体代码如下:

fig, ax = plt.subplots()dist.plot.kde(ax=ax, legend=False, title='Histogram: A vs. B')dist.plot.hist(density=True, ax=ax)ax.set_ylabel('Probability')ax.grid(axis='y')ax.set_facecolor('#d8dcd6')


总结:通过pandas实现kde图,可使用Seris.plot.kde() ,DataFrame.plot.kde() 。

使用Seaborn的完美替代

一个更高级可视化工具就是Seaborn,它是在matplotlib的基础上进一步封装的强大工具。对于直方图而言,Seaborn有 distplot() 方法,可以将单变量分布的直方图和kde同时绘制出来,而且使用及其方便,下面是实现代码(以上面生成的d为例):

import seaborn as snssns.set_style('darkgrid')sns.distplot(d)


distplot方法默认的会绘制kde,并且该方法提供了 fit 参数,可以根据数据的实际情况自行选择一个特殊的分布来对应。

sns.distplot(d, fit=stats.laplace, kde=False)


注意这两个图微小的区别。第一种情况你是在估计一个未知的概率密度函数(PDF),而第二种情况是你是知道分布的,并想知道哪些参数可以更好的描述数据。

总结:通过seaborn实现直方图,可使用seaborn.distplot() ,seaborn也有单独的kde绘图seaborn.kde() 。

在Pandas中的其它工具

除了绘图工具外,pandas也提供了一个方便的.value_counts() 方法,用来计算一个非空值的直方图,并将之转变成一个pandas的series结构,示例如下:

>>> import pandas as pd>>> data = np.random.choice(np.arange(10), size=10000,...       p=np.linspace(1, 11, 10) / 60)>>> s = pd.Series(data)>>> s.value_counts()9 18318 16247 14236 13235 10894  8883  7702  5351  3470  170dtype: int64>>> s.value_counts(normalize=True).head()9 0.18318 0.16247 0.14236 0.13235 0.1089dtype: float64

此外,pandas.cut() 也同样是一个方便的方法,用来将数据进行强制的分箱。比如说,我们有一些人的年龄数据,并想把这些数据按年龄段进行分类,示例如下:

>>> ages = pd.Series(...  [1, 1, 3, 5, 8, 10, 12, 15, 18, 18, 19, 20, 25, 30, 40, 51, 52])>>> bins = (0, 10, 13, 18, 21, np.inf) # 边界>>> labels = ('child', 'preteen', 'teen', 'military_age', 'adult')>>> groups = pd.cut(ages, bins=bins, labels=labels)>>> groups.value_counts()child   6adult   5teen   3military_age 2preteen   1dtype: int64>>> pd.concat((ages, groups), axis=1).rename(columns={0: 'age', 1: 'group'}) age   group0  1   child1  1   child2  3   child3  5   child4  8   child5 10   child6 12  preteen7 15   teen8 18   teen9 18   teen10 19 military_age11 20 military_age12 25   adult13 30   adult14 40   adult15 51   adult16 52   adult

除了使用方便外,更加好的是这些操作最后都会使用 Cython 代码来完成,在运行速度的效果上也是非常快的。

总结:其它实现直方图的方法,可使用.value_counts()和pandas.cut() 。

该使用哪个方法?

至此,我们了解了很多种方法来实现一个直方图。但是它们各自有什么有缺点呢?该如何对它们进行选择呢?当然,一个方法解决所有问题是不存在的,我们也需要根据实际情况而考虑如何选择,下面是对一些情况下使用方法的一个推荐,仅供参考。

参考:https://realpython.com/python...

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家的支持。


  • 上一条:
    Python 中字符串拼接的多种方法
    下一条:
    Python实现模拟浏览器请求及会话保持操作示例
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在windows10中升级go版本至1.24后LiteIDE的Ctrl+左击无法跳转问题解决方案(0个评论)
    • 智能合约Solidity学习CryptoZombie第四课:僵尸作战系统(0个评论)
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客