侯体宗的博客
  • 首页
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

利用Python进行数据可视化常见的9种方法!超实用!

Python  /  管理员 发布于 7年前   366

前言

如同艺术家们用绘画让人们更贴切的感知世界,数据可视化也能让人们更直观的传递数据所要表达的信息。

我们今天就分享一下如何用 Python 简单便捷的完成数据可视化。

其实利用 Python 可视化数据并不是很麻烦,因为 Python 中有两个专用于可视化的库 matplotlib 和 seaborn 能让我们很容易的完成任务。

  • Matplotlib:基于Python的绘图库,提供完全的 2D 支持和部分 3D 图像支持。在跨平台和互动式环境中生成高质量数据时,matplotlib 会很有帮助。也可以用作制作动画。
  • Seaborn:该 Python 库能够创建富含信息量和美观的统计图形。Seaborn 基于 matplotlib,具有多种特性,比如内置主题、调色板、可以可视化单变量数据、双变量数据,线性回归数据和数据矩阵以及统计型时序数据等,能让我们创建复杂的可视化图形。

我们用 Python 可以做出哪些可视化图形?

那么这里可能有人就要问了,我们为什么要做数据可视化?比如有下面这个图表:

当然如果你把这张图表丢给别人,他们倒是也能看懂,但无法很直观的理解其中的信息,而且这种形式的图表看上去也比较 low,这个时候我们如果换成直观又美观的可视化图形,不仅能突显逼格,也能让人更容易的看懂数据。

下面我们就用上面这个简单的数据集作为例子,展示用 Python 做出9种可视化效果,并附有相关代码。

导入数据集

import matplotlib.pyplot as pltimport pandas as pddf=pd.read_excel("E:/First.xlsx", "Sheet1")

可视化为直方图

fig=plt.figure() #Plots in matplotlib reside within a figure object, use plt.figure to create new figure#Create one or more subplots using add_subplot, because you can't create blank figureax = fig.add_subplot(1,1,1)#Variableax.hist(df['Age'],bins = 7) # Here you can play with number of binsLabels and Titplt.title('Age distribution')plt.xlabel('Age')plt.ylabel('#Employee')plt.show()

可视化为箱线图

import matplotlib.pyplot as pltimport pandas as pdfig=plt.figure()ax = fig.add_subplot(1,1,1)#Variableax.boxplot(df['Age'])plt.show()

可视化为小提琴图

import seaborn as sns sns.violinplot(df['Age'], df['Gender']) #Variable Plotsns.despine()

可视化为条形图

var = df.groupby('Gender').Sales.sum() #grouped sum of sales at Gender levelfig = plt.figure()ax1 = fig.add_subplot(1,1,1)ax1.set_xlabel('Gender')ax1.set_ylabel('Sum of Sales')ax1.set_title("Gender wise Sum of Sales")var.plot(kind='bar')

可视化为折线图

var = df.groupby('BMI').Sales.sum()fig = plt.figure()ax1 = fig.add_subplot(1,1,1)ax1.set_xlabel('BMI')ax1.set_ylabel('Sum of Sales')ax1.set_title("BMI wise Sum of Sales")var.plot(kind='line')

可视化为堆叠柱状图

var = df.groupby(['BMI','Gender']).Sales.sum()var.unstack().plot(kind='bar',stacked=True, color=['red','blue'], grid=False)

可视化为散点图

fig = plt.figure()ax = fig.add_subplot(1,1,1)ax.scatter(df['Age'],df['Sales']) #You can also add more variables here to represent color and size.plt.show()

可视化为泡泡图

fig = plt.figure()ax = fig.add_subplot(1,1,1)ax.scatter(df['Age'],df['Sales'], s=df['Income']) # Added third variable income as size of the bubbleplt.show()

可视化为饼状图

var=df.groupby(['Gender']).sum().stack()temp=var.unstack()type(temp)x_list = temp['Sales']label_list = temp.indexpyplot.axis("equal") #The pie chart is oval by default. To make it a circle use pyplot.axis("equal")#To show the percentage of each pie slice, pass an output format to the autopctparameter plt.pie(x_list,labels=label_list,autopct="%1.1f%%") plt.title("Pastafarianism expenses")plt.show()

可视化为热度图

import numpy as np#Generate a random number, you can refer your data values alsodata = np.random.rand(4,2)rows = list('1234') #rows categoriescolumns = list('MF') #column categoriesfig,ax=plt.subplots()#Advance color controlsax.pcolor(data,cmap=plt.cm.Reds,edgecolors='k')ax.set_xticks(np.arange(0,2)+0.5)ax.set_yticks(np.arange(0,4)+0.5)# Here we position the tick labels for x and y axisax.xaxis.tick_bottom()ax.yaxis.tick_left()#Values against each labelsax.set_xticklabels(columns,minor=False,fontsize=20)ax.set_yticklabels(rows,minor=False,fontsize=20)plt.show()

你也可以自己试着根据两个变量比如性别(X 轴)和 BMI(Y 轴)绘出热度图。

结语

本文我们分享了如何利用 Python 及 matplotlib 和 seaborn 库制作出多种多样的可视化图形。通过上面的例子,我们应该可以感受到利用可视化能多么美丽的展示数据。而且和其它语言相比,使用 Python 进行可视化更容易简便一些。

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家的支持。

参考资料:

https://www.analyticsvidhya.com/blog/2015/05/data-visualization-python/


  • 上一条:
    Python2实现的图片文本识别功能详解
    下一条:
    基于数据归一化以及Python实现方式
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在windows10中升级go版本至1.24后LiteIDE的Ctrl+左击无法跳转问题解决方案(0个评论)
    • 智能合约Solidity学习CryptoZombie第四课:僵尸作战系统(0个评论)
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客