侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

Python(TensorFlow框架)实现手写数字识别系统的方法

Python  /  管理员 发布于 7年前   346

手写数字识别算法的设计与实现

本文使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统。这是本人的本科毕业论文课题,当然,这个也是机器学习的基本问题。本博文不会以论文的形式展现,而是以编程实战完成机器学习项目的角度去描述。

项目要求:本文主要解决的问题是手写数字识别,最终要完成一个识别系统。

设计识别率高的算法,实现快速识别的系统。

1 LeNet-5模型的介绍

本文实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示:


这是原始的应用于手写数字识别的网络,我认为这也是最简单的深度网络。

LeNet-5不包括输入,一共7层,较低层由卷积层和最大池化层交替构成,更高层则是全连接和高斯连接。

LeNet-5的输入与BP神经网路的不一样。这里假设图像是黑白的,那么LeNet-5的输入是一个32*32的二维矩阵。同时,输入与下一层并不是全连接的,而是进行稀疏连接。本层每个神经元的输入来自于前一层神经元的局部区域(5×5),卷积核对原始图像卷积的结果加上相应的阈值,得出的结果再经过激活函数处理,输出即形成卷积层(C层)。卷积层中的每个特征映射都各自共享权重和阈值,这样能大大减少训练开销。降采样层(S层)为减少数据量同时保存有用信息,进行亚抽样。

第一个卷积层(C1层)由6个特征映射构成,每个特征映射是一个28×28的神经元阵列,其中每个神经元负责从5×5的区域通过卷积滤波器提取局部特征。一般情况下,滤波器数量越多,就会得出越多的特征映射,反映越多的原始图像的特征。本层训练参数共6×(5×5+1)=156个,每个像素点都是由上层5×5=25个像素点和1个阈值连接计算所得,共28×28×156=122304个连接。

S2层是对应上述6个特征映射的降采样层(pooling层)。pooling层的实现方法有两种,分别是max-pooling和mean-pooling,LeNet-5采用的是mean-pooling,即取n×n区域内像素的均值。C1通过2×2的窗口区域像素求均值再加上本层的阈值,然后经过激活函数的处理,得到S2层。pooling的实现,在保存图片信息的基础上,减少了权重参数,降低了计算成本,还能控制过拟合。本层学习参数共有1*6+6=12个,S2中的每个像素都与C1层中的2×2个像素和1个阈值相连,共6×(2×2+1)×14×14=5880个连接。

S2层和C3层的连接比较复杂。C3卷积层是由16个大小为10×10的特征映射组成的,当中的每个特征映射与S2层的若干个特征映射的局部感受野(大小为5×5)相连。其中,前6个特征映射与S2层连续3个特征映射相连,后面接着的6个映射与S2层的连续的4个特征映射相连,然后的3个特征映射与S2层不连续的4个特征映射相连,最后一个映射与S2层的所有特征映射相连。此处卷积核大小为5×5,所以学习参数共有6×(3×5×5+1)+9×(4×5×5+1)+1×(6×5×5+1)=1516个参数。而图像大小为28×28,因此共有151600个连接。

S4层是对C3层进行的降采样,与S2同理,学习参数有16×1+16=32个,同时共有16×(2×2+1)×5×5=2000个连接。

C5层是由120个大小为1×1的特征映射组成的卷积层,而且S4层与C5层是全连接的,因此学习参数总个数为120×(16×25+1)=48120个。

F6是与C5全连接的84个神经元,所以共有84×(120+1)=10164个学习参数。

卷积神经网络通过通过稀疏连接和共享权重和阈值,大大减少了计算的开销,同时,pooling的实现,一定程度上减少了过拟合问题的出现,非常适合用于图像的处理和识别。

2 手写数字识别算法模型的构建

2.1 各层设计

有了第一节的基础知识,在这基础上,进行完善和改进。

输入层设计

输入为28×28的矩阵,而不是向量。

激活函数的选取

Sigmoid函数具有光滑性、鲁棒性和其导数可用自身表示的优点,但其运算涉及指数运算,反向传播求误差梯度时,求导又涉及乘除运算,计算量相对较大。同时,针对本文构建的含有两层卷积层和降采样层,由于sgmoid函数自身的特性,在反向传播时,很容易出现梯度消失的情况,从而难以完成网络的训练。因此,本文设计的网络使用ReLU函数作为激活函数。

ReLU的表达式:

卷积层设计

本文设计卷积神经网络采取的是离散卷积,卷积步长为1,即水平和垂直方向每次运算完,移动一个像素。卷积核大小为5×5。

降采样层

本文降采样层的pooling方式是max-pooling,大小为2×2。

输出层设计

输出层设置为10个神经网络节点。数字0~9的目标向量如下表所示:

2.2 网络模型的总体结构


其实,本文网络的构建,参考自TensorFlow的手写数字识别的官方教程的,读者有兴趣也可以详细阅读。

2.3 编程实现算法

本文使用Python,调用TensorFlow的api完成手写数字识别的算法。

注:本文程序运行环境是:Win10,python3.5.2。当然,也可以在Linux下运行,由于TensorFlow对py2和py3兼容得比较好,在Linux下可以在python2.7中运行。

#!/usr/bin/env python2# -*- coding: utf-8 -*-"""Created on Fri Feb 17 19:50:49 2017@author: Yonghao Huang"""#import modulesimport numpy as npimport matplotlib.pyplot as plt#from sklearn.metrics import confusion_matriximport tensorflow as tfimport timefrom datetime import timedeltaimport mathfrom tensorflow.examples.tutorials.mnist import input_datadef new_weights(shape):  return tf.Variable(tf.truncated_normal(shape,stddev=0.05))def new_biases(length):  return tf.Variable(tf.constant(0.1,shape=length))def conv2d(x,W):  return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')def max_pool_2x2(inputx):  return tf.nn.max_pool(inputx,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')#import datadata = input_data.read_data_sets("./data", one_hot=True) # one_hot means [0 0 1 0 0 0 0 0 0 0] stands for 2print("Size of:")print("--Training-set:\t\t{}".format(len(data.train.labels)))print("--Testing-set:\t\t{}".format(len(data.test.labels)))print("--Validation-set:\t\t{}".format(len(data.validation.labels)))data.test.cls = np.argmax(data.test.labels,axis=1)  # show the real test labels: [7 2 1 ..., 4 5 6], 10000valuesx = tf.placeholder("float",shape=[None,784],name='x')x_image = tf.reshape(x,[-1,28,28,1])y_true = tf.placeholder("float",shape=[None,10],name='y_true')y_true_cls = tf.argmax(y_true,dimension=1)# Conv 1layer_conv1 = {"weights":new_weights([5,5,1,32]),        "biases":new_biases([32])}h_conv1 = tf.nn.relu(conv2d(x_image,layer_conv1["weights"])+layer_conv1["biases"])h_pool1 = max_pool_2x2(h_conv1)# Conv 2layer_conv2 = {"weights":new_weights([5,5,32,64]),        "biases":new_biases([64])}h_conv2 = tf.nn.relu(conv2d(h_pool1,layer_conv2["weights"])+layer_conv2["biases"])h_pool2 = max_pool_2x2(h_conv2)# Full-connected layer 1fc1_layer = {"weights":new_weights([7*7*64,1024]),      "biases":new_biases([1024])}h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,fc1_layer["weights"])+fc1_layer["biases"])# Droupout Layerkeep_prob = tf.placeholder("float")h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)# Full-connected layer 2fc2_layer = {"weights":new_weights([1024,10]),       "biases":new_weights([10])}# Predicted classy_pred = tf.nn.softmax(tf.matmul(h_fc1_drop,fc2_layer["weights"])+fc2_layer["biases"]) # The output is like [0 0 1 0 0 0 0 0 0 0]y_pred_cls = tf.argmax(y_pred,dimension=1) # Show the real predict number like '2'# cost function to be optimizedcross_entropy = -tf.reduce_mean(y_true*tf.log(y_pred))optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)# Performance Measurescorrect_prediction = tf.equal(y_pred_cls,y_true_cls)accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))with tf.Session() as sess:  init = tf.global_variables_initializer()  sess.run(init)  train_batch_size = 50  def optimize(num_iterations):    total_iterations=0    start_time = time.time()    for i in range(total_iterations,total_iterations+num_iterations):      x_batch,y_true_batch = data.train.next_batch(train_batch_size)      feed_dict_train_op = {x:x_batch,y_true:y_true_batch,keep_prob:0.5}      feed_dict_train = {x:x_batch,y_true:y_true_batch,keep_prob:1.0}      sess.run(optimizer,feed_dict=feed_dict_train_op)      # Print status every 100 iterations.      if i%100==0:        # Calculate the accuracy on the training-set.        acc = sess.run(accuracy,feed_dict=feed_dict_train)        # Message for printing.        msg = "Optimization Iteration:{0:>6}, Training Accuracy: {1:>6.1%}"        # Print it.        print(msg.format(i+1,acc))    # Update the total number of iterations performed    total_iterations += num_iterations    # Ending time    end_time = time.time()    # Difference between start and end_times.    time_dif = end_time-start_time    # Print the time-usage    print("Time usage:"+str(timedelta(seconds=int(round(time_dif)))))  test_batch_size = 256  def print_test_accuracy():    # Number of images in the test-set.    num_test = len(data.test.images)    cls_pred = np.zeros(shape=num_test,dtype=np.int)    i = 0    while i < num_test:      # The ending index for the next batch is denoted j.      j = min(i+test_batch_size,num_test)      # Get the images from the test-set between index i and j      images = data.test.images[i:j, :]      # Get the associated labels      labels = data.test.labels[i:j, :]      # Create a feed-dict with these images and labels.      feed_dict={x:images,y_true:labels,keep_prob:1.0}      # Calculate the predicted class using Tensorflow.      cls_pred[i:j] = sess.run(y_pred_cls,feed_dict=feed_dict)      # Set the start-index for the next batch to the      # end-index of the current batch      i = j    cls_true = data.test.cls    correct = (cls_true==cls_pred)    correct_sum = correct.sum()    acc = float(correct_sum) / num_test    # Print the accuracy    msg = "Accuracy on Test-Set: {0:.1%} ({1}/{2})"    print(msg.format(acc,correct_sum,num_test))  # Performance after 10000 optimization iterations  optimize(num_iterations=10000)  print_test_accuracy()  savew_hl1 = layer_conv1["weights"].eval()  saveb_hl1 = layer_conv1["biases"].eval()  savew_hl2 = layer_conv2["weights"].eval()  saveb_hl2 = layer_conv2["biases"].eval()  savew_fc1 = fc1_layer["weights"].eval()  saveb_fc1 = fc1_layer["biases"].eval()  savew_op = fc2_layer["weights"].eval()  saveb_op = fc2_layer["biases"].eval()  np.save("savew_hl1.npy", savew_hl1)  np.save("saveb_hl1.npy", saveb_hl1)  np.save("savew_hl2.npy", savew_hl2)  np.save("saveb_hl2.npy", saveb_hl2)  np.save("savew_hl3.npy", savew_fc1)  np.save("saveb_hl3.npy", saveb_fc1)  np.save("savew_op.npy", savew_op)  np.save("saveb_op.npy", saveb_op)

运行结果显示:测试集中准确率大概为99.2%。

我还写了一些辅助函数,可以查看部分识别错误的图片,


还可以查看混淆矩阵,

2.3 实现手写识别系统

最后,将训练好的参数保存,封装进一个GUI界面中,形成一个手写识别系统。


系统中还添加了一点图像预处理的操作,比如灰度化,图像信息的归一化等,更贴近实际应用。
系统可进行快速识别,如下图

3 总结

本文实现的系统其实是基于卷积神经网络的手写数字识别系统。该系统能快速实现手写数字识别,成功识别率高。缺点:只能正确识别单个数字,图像预处理还不够,没有进行图像分割,读者也可以自行添加,进行完善。

4 收获

本人之前的本科期间,虽然努力学习高数、线性代数和概率论,但是没有认真学习过机器学习,本人是2017年才开始系统学习机器学习相关知识,而且本科毕业论文也选择了相关的课题,虽然比较基础,但是认真完成后,有一种学以致用的满足感,同时也激励着我进行更深入的理论学习和实践探讨,与所有读者共勉。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    Python生成短uuid的方法实例详解
    下一条:
    Python实现的多进程和多线程功能示例
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • PHP 8.4 Alpha 1现已发布!(0个评论)
    • Laravel 11.15版本发布 - Eloquent Builder中添加的泛型(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客