侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

详解Python中where()函数的用法

Python  /  管理员 发布于 7年前   201

where()的用法

首先强调一下,where()函数对于不同的输入,返回的只是不同的。

1当数组是一维数组时,返回的值是一维的索引,所以只有一组索引数组

2当数组是二维数组时,满足条件的数组值返回的是值的位置索引,因此会有两组索引数组来表示值的位置

例如

>>>b=np.arange(10)>>>barray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])>>>np.where(b>5) (array([6, 7, 8, 9], dtype=int64),)>>>a=np.reshape(np.arange(20),(4,5))>>>a array([[ 0, 1, 2, 3, 4],    [ 5, 6, 7, 8, 9],    [10, 11, 12, 13, 14],    [15, 16, 17, 18, 19]])>>>np.where(a>10)(array([2, 2, 2, 2, 3, 3, 3, 3, 3], dtype=int64), array([1, 2, 3, 4, 0, 1, 2, 3, 4], dtype=int64))

对numpy标准库里的解释做一个介绍:

numpy.where(condition[, x, y])

基于条件condition,返回值来自x或者y.

如果.

参数:

condition : 数组,bool值

When True, yield x, otherwise yield y.

x, y : array_like, 可选

x与y的shape要相同,当condition中的值是true时返回x对应位置的值,false是返回y的

返回值:

out : ndarray or tuple of ndarrays

①如果参数有condition,x和y,它们三个参数的shape是相同的。那么,当condition中的值是true时返回x对应位置的值,false是返回y的。

②如果参数只有condition的话,返回值是condition中元素值为true的位置索引,切是以元组形式返回,元组的元素是ndarray数组,表示位置的索引

>>> np.where([[True, False], [True, True]],...     [[1, 2], [3, 4]],...     [[9, 8], [7, 6]])array([[1, 8],    [3, 4]])>>>>>> np.where([[0, 1], [1, 0]])(array([0, 1]), array([1, 0]))>>>>>> x = np.arange(9.).reshape(3, 3)>>> np.where( x > 5 )(array([2, 2, 2]), array([0, 1, 2]))>>> x[np.where( x > 3.0 )]        # Note: result is 1D.array([ 4., 5., 6., 7., 8.])>>> np.where(x < 5, x, -1)        # Note: broadcasting.array([[ 0., 1., 2.],    [ 3., 4., -1.],    [-1., -1., -1.]])Find the indices of elements of x that are in goodvalues.>>>>>> goodvalues = [3, 4, 7]>>> ix = np.in1d(x.ravel(), goodvalues).reshape(x.shape)>>> ixarray([[False, False, False],    [ True, True, False],    [False, True, False]], dtype=bool)>>> np.where(ix)(array([1, 1, 2]), array([0, 1, 1]))

两种方法的示例代码

第一种用法

np.where(conditions,x,y)

if (condituons成立):

  数组变x

else:

  数组变y

import numpy as np'''x = np.random.randn(4,4)print(np.where(x>0,2,-2))#试试效果xarr = np.array([1.1,1.2,1.3,1.4,1.5])yarr = np.array([2.1,2.2,2.3,2.4,2.5])zarr = np.array([True,False,True,True,False])result = [(x if c else y)     for x,y,c in zip(xarr,yarr,zarr)]print(result)#where()函数处理就相当于上面那种方案result = np.where(zarr,xarr,yarr)print(result)'''#发现个有趣的东西# #处理2组数组# #True and True = 0# #True and False = 1# #False and True = 2# #False and False = 3cond2 = np.array([True,False,True,False])cond1 = np.array([True,True,False,False])#第一种处理 太长太丑result = []for i in range(4):  if (cond1[i] & cond2[i]):  result.append(0);  elif (cond1[i]):  result.append(1);  elif (cond2[i]):  result.append(2);  else : result.append(3);print(result)#第二种 直接where() 很快很方便result = np.where(cond1 & cond2,0,np.where(cond1,1,np.where(cond2,2,3)))print(result)#第三种 更简便(好像这跟where()函数半毛钱的关系都没有result = 1*(cond1 & -cond2)+2*(cond2 & -cond1)+3*(-(cond1 | cond2)) (没想到还可以这么表达吧)print(result)

第二种用法

where(conditions)

相当于给出数组的下标

x = np.arange(16)print(x[np.where(x>5)])#输出:(array([ 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], dtype=int64),)x = np.arange(16).reshape(-1,4)print(np.where(x>5))#(array([1, 1, 2, 2, 2, 2, 3, 3, 3, 3], dtype=int64), array([2, 3, 0, 1, 2, 3, 0, 1, 2, 3], dtype=int64))#注意这里是坐标是前面的一维的坐标,后面是二维的坐标
ix = np.array([[False, False, False],    [ True, True, False],    [False, True, False]], dtype=bool)print(np.where(ix))#输出:(array([1, 1, 2], dtype=int64), array([0, 1, 1], dtype=int64))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    python实现朴素贝叶斯分类器
    下一条:
    Python使用xlwt模块操作Excel的方法详解
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在windows10中升级go版本至1.24后LiteIDE的Ctrl+左击无法跳转问题解决方案(0个评论)
    • 智能合约Solidity学习CryptoZombie第四课:僵尸作战系统(0个评论)
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客