侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

python文本数据相似度的度量

Python  /  管理员 发布于 7年前   235

编辑距离

编辑距离,又称为Levenshtein距离,是用于计算一个字符串转换为另一个字符串时,插入、删除和替换的次数。例如,将'dad'转换为'bad'需要一次替换操作,编辑距离为1。

nltk.metrics.distance.edit_distance函数实现了编辑距离。

from nltk.metrics.distance import edit_distancestr1 = 'bad'str2 = 'dad'print(edit_distance(str1, str2))

N元语法相似度

n元语法只是简单地表示文本中n个标记的所有可能的连续序列。n元语法具体是这样的

import nltk#这里展示2元语法text1 = 'Chief Executive Officer'#bigram考虑匹配开头和结束,所有使用pad_right和pad_leftceo_bigrams = nltk.bigrams(text1.split(),pad_right=True,pad_left=True)print(list(ceo_bigrams))[(None, 'Chief'), ('Chief', 'Executive'), ('Executive', 'Officer'), ('Officer', None)]

2元语法相似度计算

import nltk#这里展示2元语法def bigram_distance(text1, text2):  #bigram考虑匹配开头和结束,所以使用pad_right和pad_left  text1_bigrams = nltk.bigrams(text1.split(),pad_right=True,pad_left=True)    text2_bigrams = nltk.bigrams(text2.split(), pad_right=True, pad_left=True)    #交集的长度  distance = len(set(text1_bigrams).intersection(set(text2_bigrams)))    return distancetext1 = 'Chief Executive Officer is manager'text2 = 'Chief Technology Officer is technology manager'print(bigram_distance(text1, text2)) #相似度为3

jaccard相似性

jaccard距离度量的两个集合的相似度,它是由 (集合1交集合2)/(结合1交结合2)计算而来的。

实现方式

from nltk.metrics.distance import jaccard_distance#这里我们以单个的字符代表文本set1 = set(['a','b','c','d','a'])set2 = set(['a','b','e','g','a'])print(jaccard_distance(set1, set2))

0.6666666666666666

masi距离

masi距离度量是jaccard相似度的加权版本,当集合之间存在部分重叠时,通过调整得分来生成小于jaccard距离值。

from nltk.metrics.distance import jaccard_distance,masi_distance#这里我们以单个的字符代表文本set1 = set(['a','b','c','d','a'])set2 = set(['a','b','e','g','a'])print(jaccard_distance(set1, set2))print(masi_distance(set1, set2))

0.6666666666666666
0.22000000000000003

余弦相似度

nltk提供了余弦相似性的实现方法,比如有一个词语空间

word_space = [w1,w2,w3,w4]text1 = 'w1 w2 w1 w4 w1'text2 = 'w1 w3 w2'#按照word_space位置,计算每个位置词语出现的次数text1_vector = [3,1,0,1]text2_vector = [1,1,1,0]

[3,1,0,1]意思是指w1出现了3次,w2出现了1次,w3出现0次,w4出现1次。

好了下面看代码,计算text1与text2的余弦相似性

from nltk.cluster.util import cosine_distancetext1_vector = [3,1,0,1]text2_vector = [1,1,1,0]print(cosine_distance(text1_vector,text2_vector))

0.303689376177

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    Python中的pack和unpack的使用
    下一条:
    python使用jieba实现中文分词去停用词方法示例
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客