侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

Python KMeans聚类问题分析

Python  /  管理员 发布于 7年前   305

今天用python实现了一下简单的聚类分析,顺便熟悉了numpy数组操作和绘图的一些技巧,在这里做个记录。

from pylab import *from sklearn.cluster import KMeans## 利用numpy.append()函数实现matlab多维数组合并的效果,axis 参数值为 0 时是 y 轴方向合并,参数值为 1 时是 x 轴方向合并,分别对应matlab [A ; B] 和 [A , B]的效果#创建5个随机的数据集x1=append(randn(500,1)+5,randn(500,1)+5,axis=1)x2=append(randn(500,1)+5,randn(500,1)-5,axis=1)x3=append(randn(500,1)-5,randn(500,1)+5,axis=1)x4=append(randn(500,1)-5,randn(500,1)-5,axis=1)x5=append(randn(500,1),randn(500,1),axis=1)# 下面用较笨的方法把5个数据集合并成 (2500,2)大小的数组datadata=append(x1,x2,axis=0)data=append(data,x3,axis=0)data=append(data,x4,axis=0)data=append(data,x5,axis=0)plot(x1[:,0],x1[:,1],'oc',markersize=0.8)plot(x2[:,0],x2[:,1],'og',markersize=0.8)plot(x3[:,0],x3[:,1],'ob',markersize=0.8)plot(x4[:,0],x4[:,1],'om',markersize=0.8)plot(x5[:,0],x5[:,1],'oy',markersize=0.8)k=KMeans(n_clusters=5,random_state=0).fit(data)t=k.cluster_centers_ # 获取数据中心点plot(t[:,0],t[:,1],'r*',markersize=16) # 显示这5个中心点,五角星标记~title('KMeans Clustering')box(False)xticks([])  # 去掉坐标轴的标记yticks([])show()

结果如下:

2017/01/11更新

今天重新试运行程序的出现报错了,提示导入NUMPY_MKL失败,因为之前用命令pip install -U numpy手动更新了numpy,最初的是在http://www.lfd.uci.edu/~gohlke/pythonlibs/#numpy 里下载的numpy-1.11.2+mkl-cp27-cp27m-win_amd64.whl 文件安装的,只要重新安装回去就可以了

2017/1/18更新

python中还有一个叫plotly 的package,可以通过pip install plotly 或 pip3 install plotly(Python3.X) ,使用这个package可以绘制精美的图像,官网中有很多例子介绍,同时plotly 还支持matlab,R等,但是个人觉得plotly 的绘图语法相比matplotlib 的繁琐,需要照着例程来修改才比较方便,不过如果只是要想数据可视化更好看的话参考官网例程并做修改也无妨,下面是来自官网的一段示例代码:

import plotly.plotly as pyimport plotly.graph_objs as goimport plotlyimport numpy as np#生成三组高斯分布(Gaussian Distribution)点集x0 = np.random.normal(2, 0.45, 300)y0 = np.random.normal(2, 0.45, 300)x1 = np.random.normal(6, 0.8, 200)y1 = np.random.normal(6, 0.8, 200)x2 = np.random.normal(4, 0.3, 200)y2 = np.random.normal(4, 0.3, 200)#创建图形对象 graph objecttrace0 = go.Scatter( x=x0, y=y0, mode='markers',)trace1 = go.Scatter( x=x1, y=y1, mode='markers')trace2 = go.Scatter( x=x2, y=y2, mode='markers')trace3 = go.Scatter( x=x1, y=y0, mode='markers')#布局是一个字典,字典关键字keys包括:'shapes', 'showlegend'layout = { 'shapes': [  {   'type': 'circle',   'xref': 'x',   'yref': 'y',   'x0': min(x0),   'y0': min(y0),   'x1': max(x0),   'y1': max(y0),   'opacity': 0.2,   'fillcolor': 'blue',   'line': {    'color': 'blue',   },  },  {   'type': 'circle',   'xref': 'x',   'yref': 'y',   'x0': min(x1),   'y0': min(y1),   'x1': max(x1),   'y1': max(y1),   'opacity': 0.2,   'fillcolor': 'orange',   'line': {    'color': 'orange',   },  },  {   'type': 'circle',   'xref': 'x',   'yref': 'y',   'x0': min(x2),   'y0': min(y2),   'x1': max(x2),   'y1': max(y2),   'opacity': 0.2,   'fillcolor': 'green',   'line': {    'color': 'green',   },  },  {   'type': 'circle',   'xref': 'x',   'yref': 'y',   'x0': min(x1),   'y0': min(y0),   'x1': max(x1),   'y1': max(y0),   'opacity': 0.2,   'fillcolor': 'red',   'line': {    'color': 'red',   },  }, ], 'showlegend': False,}data = [trace0, trace1, trace2, trace3]#图像包括数据部分和布局部分fig = { 'data': data, 'layout': layout,}#使用离线的方式绘制图像,因为没有注册官方的网站,而且那个网站不容易进去,所以用离线绘制plotly.offline.plot(fig, filename='clusters')

结果是通过浏览器打开图片的,可以保存到本地,如下图:

总结:plotly 这个库虽然语法比较繁琐,但是对数据显示要求较高的情况下可以充分利用,一般绘图的话使用matplotlib比较方便,特别是ipython模式下先执行from pylab import * 可以获得和MATLAB 类似的工作环境。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    python自动发邮件库yagmail的示例代码
    下一条:
    浅谈python爬虫使用Selenium模拟浏览器行为
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • PHP 8.4 Alpha 1现已发布!(0个评论)
    • Laravel 11.15版本发布 - Eloquent Builder中添加的泛型(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客