侯体宗的博客
  • 首页
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

Python实现的径向基(RBF)神经网络示例

Python  /  管理员 发布于 7年前   565

本文实例讲述了Python实现的径向基(RBF)神经网络。分享给大家供大家参考,具体如下:

from numpy import array, append, vstack, transpose, reshape, \         dot, true_divide, mean, exp, sqrt, log, \         loadtxt, savetxt, zeros, frombufferfrom numpy.linalg import norm, lstsqfrom multiprocessing import Process, Arrayfrom random import samplefrom time import timefrom sys import stdoutfrom ctypes import c_doublefrom h5py import Filedef metrics(a, b):  return norm(a - b)def gaussian (x, mu, sigma):  return exp(- metrics(mu, x)**2 / (2 * sigma**2))def multiQuadric (x, mu, sigma):  return pow(metrics(mu,x)**2 + sigma**2, 0.5)def invMultiQuadric (x, mu, sigma):  return pow(metrics(mu,x)**2 + sigma**2, -0.5)def plateSpine (x,mu):  r = metrics(mu,x)  return (r**2) * log(r)class Rbf:  def __init__(self, prefix = 'rbf', workers = 4, extra_neurons = 0, from_files = None):    self.prefix = prefix    self.workers = workers    self.extra_neurons = extra_neurons    # Import partial model    if from_files is not None:      w_handle = self.w_handle = File(from_files['w'], 'r')      mu_handle = self.mu_handle = File(from_files['mu'], 'r')      sigma_handle = self.sigma_handle = File(from_files['sigma'], 'r')      self.w = w_handle['w']      self.mu = mu_handle['mu']      self.sigmas = sigma_handle['sigmas']      self.neurons = self.sigmas.shape[0]  def _calculate_error(self, y):    self.error = mean(abs(self.os - y))    self.relative_error = true_divide(self.error, mean(y))  def _generate_mu(self, x):    n = self.n    extra_neurons = self.extra_neurons    # TODO: Make reusable    mu_clusters = loadtxt('clusters100.txt', delimiter='\t')    mu_indices = sample(range(n), extra_neurons)    mu_new = x[mu_indices, :]    mu = vstack((mu_clusters, mu_new))    return mu  def _calculate_sigmas(self):    neurons = self.neurons    mu = self.mu    sigmas = zeros((neurons, ))    for i in xrange(neurons):      dists = [0 for _ in xrange(neurons)]      for j in xrange(neurons):        if i != j:          dists[j] = metrics(mu[i], mu[j])      sigmas[i] = mean(dists)* 2           # max(dists) / sqrt(neurons * 2))    return sigmas  def _calculate_phi(self, x):    C = self.workers    neurons = self.neurons    mu = self.mu    sigmas = self.sigmas    phi = self.phi = None    n = self.n    def heavy_lifting(c, phi):      s = jobs[c][1] - jobs[c][0]      for k, i in enumerate(xrange(jobs[c][0], jobs[c][1])):        for j in xrange(neurons):          # phi[i, j] = metrics(x[i,:], mu[j])**3)          # phi[i, j] = plateSpine(x[i,:], mu[j]))          # phi[i, j] = invMultiQuadric(x[i,:], mu[j], sigmas[j]))          phi[i, j] = multiQuadric(x[i,:], mu[j], sigmas[j])          # phi[i, j] = gaussian(x[i,:], mu[j], sigmas[j]))        if k % 1000 == 0:          percent = true_divide(k, s)*100          print(c, ': {:2.2f}%'.format(percent))      print(c, ': Done')    # distributing the work between 4 workers    shared_array = Array(c_double, n * neurons)    phi = frombuffer(shared_array.get_obj())    phi = phi.reshape((n, neurons))    jobs = []    workers = []    p = n / C    m = n % C    for c in range(C):      jobs.append((c*p, (c+1)*p + (m if c == C-1 else 0)))      worker = Process(target = heavy_lifting, args = (c, phi))      workers.append(worker)      worker.start()    for worker in workers:      worker.join()    return phi  def _do_algebra(self, y):    phi = self.phi    w = lstsq(phi, y)[0]    os = dot(w, transpose(phi))    return w, os    # Saving to HDF5    os_h5 = os_handle.create_dataset('os', data = os)  def train(self, x, y):    self.n = x.shape[0]    ## Initialize HDF5 caches    prefix = self.prefix    postfix = str(self.n) + '-' + str(self.extra_neurons) + '.hdf5'    name_template = prefix + '-{}-' + postfix    phi_handle = self.phi_handle = File(name_template.format('phi'), 'w')    os_handle = self.w_handle = File(name_template.format('os'), 'w')    w_handle = self.w_handle = File(name_template.format('w'), 'w')    mu_handle = self.mu_handle = File(name_template.format('mu'), 'w')    sigma_handle = self.sigma_handle = File(name_template.format('sigma'), 'w')    ## Mu generation    mu = self.mu = self._generate_mu(x)    self.neurons = mu.shape[0]    print('({} neurons)'.format(self.neurons))    # Save to HDF5    mu_h5 = mu_handle.create_dataset('mu', data = mu)    ## Sigma calculation    print('Calculating Sigma...')    sigmas = self.sigmas = self._calculate_sigmas()    # Save to HDF5    sigmas_h5 = sigma_handle.create_dataset('sigmas', data = sigmas)    print('Done')    ## Phi calculation    print('Calculating Phi...')    phi = self.phi = self._calculate_phi(x)    print('Done')    # Saving to HDF5    print('Serializing...')    phi_h5 = phi_handle.create_dataset('phi', data = phi)    del phi    self.phi = phi_h5    print('Done')    ## Algebra    print('Doing final algebra...')    w, os = self.w, _ = self._do_algebra(y)    # Saving to HDF5    w_h5 = w_handle.create_dataset('w', data = w)    os_h5 = os_handle.create_dataset('os', data = os)    ## Calculate error    self._calculate_error(y)    print('Done')  def predict(self, test_data):    mu = self.mu = self.mu.value    sigmas = self.sigmas = self.sigmas.value    w = self.w = self.w.value    print('Calculating phi for test data...')    phi = self._calculate_phi(test_data)    os = dot(w, transpose(phi))    savetxt('iok3834.txt', os, delimiter='\n')    return os  @property  def summary(self):    return '\n'.join( \      ['-----------------',      'Training set size: {}'.format(self.n),      'Hidden layer size: {}'.format(self.neurons),      '-----------------',      'Absolute error  : {:02.2f}'.format(self.error),      'Relative error  : {:02.2f}%'.format(self.relative_error * 100)])def predict(test_data):  mu = File('rbf-mu-212243-2400.hdf5', 'r')['mu'].value  sigmas = File('rbf-sigma-212243-2400.hdf5', 'r')['sigmas'].value  w = File('rbf-w-212243-2400.hdf5', 'r')['w'].value  n = test_data.shape[0]  neur = mu.shape[0]  mu = transpose(mu)  mu.reshape((n, neur))  phi = zeros((n, neur))  for i in range(n):    for j in range(neur):      phi[i, j] = multiQuadric(test_data[i,:], mu[j], sigmas[j])  os = dot(w, transpose(phi))  savetxt('iok3834.txt', os, delimiter='\n')  return os

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数据结构与算法教程》、《Python编码操作技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。


  • 上一条:
    Python用 KNN 进行验证码识别的实现方法
    下一条:
    Python实现淘宝秒杀聚划算抢购自动提醒源码
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在windows10中升级go版本至1.24后LiteIDE的Ctrl+左击无法跳转问题解决方案(0个评论)
    • 智能合约Solidity学习CryptoZombie第四课:僵尸作战系统(0个评论)
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(95个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客