侯体宗的博客
  • 首页
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

Python实现识别手写数字 简易图片存储管理系统

Python  /  管理员 发布于 7年前   165

写在前面

上一篇文章Python实现识别手写数字―图像的处理中我们讲了图片的处理,将图片经过剪裁,拉伸等操作以后将每一个图片变成了1x10000大小的向量。但是如果只是这样的话,我们每一次运行的时候都需要将他们计算一遍,当图片特别多的时候会消耗大量的时间。

所以我们需要将这些向量存入一个文件当中,每次先看看图库中有没有新增的图片,如果有新增的图片,那么就将新增的图片变成1x10000向量再存入文件之中,然后从文件中读取全部图片向量即可。当图库中没有新增图片的时候,那么就直接调用文件中的图片向量进行计算就好。这样子算是节省了大量的时间。

所以本文就是从零开始建立一个这样的图片存储管理系统。

实现逻辑

第一次读入图片

我们的图库中拥有一大堆图片,每一张图片上面都是一个手写的数字,图片的名称为[数字内容]_[序号]。比如说一个图片的名称为2_3,代表这一张图片里面的数字是2,并且是“数字是2的第3张图片”。

存在一个csv文件作为我们的建议的图片数据库,名称为Data.csv。

首先我们读取图库中所有图片的名称,保存在fileNames中。然后读取Data.csv中所有数据。

提取出Data.csv的最后一列(一共10002列,第10001列说明该数字是什么数字,第10002列是图片的名称),也就是数据库中存储的所有图片的名称,存储在item中。

将新加入图库的图片名称保存在newFileNames中。如果Data.csv为空,那么就直接令newFileNames = fileNames。也就是说如果数据库中什么也没有,那么图库中所有图片都是新加入的。

如果Data.csv不为空,那么就将item里面的内容与fileNames的内容比较,如果出现了fileNames里面有的名称item中没有,那么就将这些名称放进newFileNames中。如果item里有的名称fileNames中没有,那就不管。

也就是说,我令我们的数据库只进不出。

现在我们得到了新加入图库的图片的名称newFileNames。

将newFileNames中的名称的图片带入上一文中函数GetTrainPicture进行处理,得到了一个nx10001的矩阵,每一行代表一个新加入的图片,前10000列是图片向量,第10001列是该图片的数字,保存在pic中。

将这些图片压入到数据库的后面。

读取之前数据库原有的图片向量,并与pic合并,得到目前拥有的所有的训练图片向量pic。

以上就是本章写的所有内容,下面放出代码来详细解释一下。

代码解析

主文件

import osimport numpy as npimport OperatePicture as OPimport OperateDataBase as ODimport csv##Essential vavriable 基础变量#Standard size 标准大小N = 100#Gray threshold 灰度阈值color = 100/255#读取原CSV文件reader = list(csv.reader(open('DataBase.csv', encoding = 'utf-8')))#清除读取后的第一个空行del reader[0]#读取num目录下的所有文件名fileNames = os.listdir(r"./num/")#对比fileNames与reader,得到新增的图片newFileNamesnewFileNames = OD.NewFiles(fileNames, reader)print('New pictures are: 'newFileNames)#得到newFilesNames对应的矩阵pic = OP.GetTrainPicture(newFileNames)#将新增图片矩阵存入CSV中OD.SaveToCSV(pic, newFileNames)#将原数据库矩阵与新数据库矩阵合并pic = OD.Combination(reader, pic)

我将两节内容分别封装在两个py文件里面,上一篇文章中的图片的切割与处理等所有内容我放在文件OperatePicture里面了,这一节的数据库处理放在了文件OperateDatabase里面。

因为整个代码的逻辑我在上面已经捋过一遍了,所以我不再解释其中的内容,接下来针对每个函数开始讲解。

OperateDatabase代码

从上面的主文件中,我们首先用到了函数NewFiles,主要是对比fileNames和reader这两个文件中图片的名称有什么不同,返回值是新增的图片的名称的列表。下面是代码

def NewFiles(fileNames, reader): '''判断是否有不同于数据库中的新文件加入''' #如果数据库中没有数据,则返回filenames if len(reader) == 0:  return fileNames else:  #从数据库中提取所有名称  files = [item[10001] for item in reader]  #需要加入的图片名称  newFileNames = []  for item in fileNames:   #判断当前名称是否存在数据库中   #如果不存在,则加入newFileNames   if item not in files:    newFileNames.append(item)  return newFileNames

首先判断reader是否有内容,如果没有内容,说明是第一次执行,那么会直接把fileNames返回。否则才会进入下面进行比较。

返回了newFileNames之后,就会把这个列表中的所有名称的图片通过GetTrainPicture函数得到一个1x10001大小的矩阵,具体过程请看我上一篇文章讲的内容。

之后为了把新的数据存入CSV文件中,我们利用函数SaveToCSV将pic存入文件中,具体代码如下。

def SaveToCSV(pic, fileNames): '''将pic与对应的dileNames存入CSV文件''' writer = csv.writer(open('Database.csv', 'a', newline = ''), dialect = 'excel') #将fileNames变为列表 f = [item for item in fileNames] #每一行依次写入文件中 for i in range(len(pic)):  #将改行图片向量转为list  item = pic[i].tolist()  #将这个图片向量对应的名称f放入列表最后一个  item.append(f[i])  writer.writerow(item)

当函数运行过后,会把pic矩阵对应的内容直接给续写入CSV文件中,相当于数据库操纵的写入,并不会覆盖之前原有的数据。

之后我们需要将数据库原有的一大堆数据reader和新加进来的数据pic合并到pic里面,所以利用Combination函数将两个矩阵合并,代码如下

def Combination(reader, pic): '''将两个矩阵reader与pic合并''' #两个矩阵的总行数 l = len(reader) + len(pic) #初始化新的矩阵 newPic = np.zeros(l*10001).reshape(l, 10001) #将reader最后的那个字符串名称去掉 for item in reader:  item.pop() #将reader转化为numpy的矩阵形式 reader = np.array(reader) #新矩阵前半部分放reader,后半部分放pic if len(reader) != 0:  newPic[0:len(reader), :] = reader newPic[len(reader):len(pic), :] = pic return newPic

因为reader最后一行还包括了一个图片的名称,所以先利用pop将其去掉,之后转化为矩阵形式,然后再直接放入矩阵中。这个矩阵操作可能没有见过,下面我详细解释一下。

假如我现在有一个2x3的矩阵和一个2x2的矩阵

m = [[1 2 3]  [4 5 6]]n = [[7 8]  [9 1]]

我可以进行如下操作

#操作一m[:, 0:2] = nprint(m)#操作二m[:, 1:3] = nprint(m)#以下为输出结果#操作一[[7 8 3] [9 1 6]]#操作二[[7 7 8] [9 9 1]]

可以看出操作一直接把m的第一二列给替换成n,操作二把m的第二三列替换成了n。具体过程可以百度查一下numpy的矩阵的操作,也可以自己总结规律,不细讲了。

以上就是这一篇的全部代码。

小结

这一篇我相当于用CSV文件制作了一个非常简陋的数据库,能够执行的操作只有识别已有内容NewFiles与添加内容SaveToCSV,并没有插入、删改等操作。主要是我觉得这两个函数目前已经够用,因此只写了这两个操作,所以再需求已经被满足的情况下就不再拓展了。

所有的源代码已经上传到了我的GitHub上,可以前去下载,谢谢阅读。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    浅谈Python用QQ邮箱发送邮件时授权码的问题
    下一条:
    详解Python自建logging模块
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在windows10中升级go版本至1.24后LiteIDE的Ctrl+左击无法跳转问题解决方案(0个评论)
    • 智能合约Solidity学习CryptoZombie第四课:僵尸作战系统(0个评论)
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(95个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客