侯体宗的博客
  • 首页
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

python机器学习理论与实战(六)支持向量机

Python  /  管理员 发布于 7年前   247

上节基本完成了SVM的理论推倒,寻找最大化间隔的目标最终转换成求解拉格朗日乘子变量alpha的求解问题,求出了alpha即可求解出SVM的权重W,有了权重也就有了最大间隔距离,但是其实上节我们有个假设:就是训练集是线性可分的,这样求出的alpha在[0,infinite]。但是如果数据不是线性可分的呢?此时我们就要允许部分的样本可以越过分类器,这样优化的目标函数就可以不变,只要引入松弛变量即可,它表示错分类样本点的代价,分类正确时它等于0,当分类错误时,其中Tn表示样本的真实标签-1或者1,回顾上节中,我们把支持向量到分类器的距离固定为1,因此两类的支持向量间的距离肯定大于1的,当分类错误时肯定也大于1,如(图五)所示(这里公式和图标序号都接上一节)。

(图五)

       这样有了错分类的代价,我们把上节(公式四)的目标函数上添加上这一项错分类代价,得到如(公式八)的形式:

(公式八)

重复上节的拉格朗日乘子法步骤,得到(公式九):


(公式九)

         多了一个Un乘子,当然我们的工作就是继续求解此目标函数,继续重复上节的步骤,求导得到(公式十):

 

(公式十)

         又因为alpha大于0,而且Un大于0,所以0<alpha<C,为了解释的清晰一些,我们把(公式九)的KKT条件也发出来(上节中的第三类优化问题),注意Un是大于等于0:

 

      推导到现在,优化函数的形式基本没变,只是多了一项错分类的价值,但是多了一个条件,0<alpha<C,C是一个常数,它的作用就是在允许有错误分类的情况下,控制最大化间距,它太大了会导致过拟合,太小了会导致欠拟合。接下来的步骤貌似大家都应该知道了,多了一个C常量的限制条件,然后继续用SMO算法优化求解二次规划,但是我想继续把核函数也一次说了,如果样本线性不可分,引入核函数后,把样本映射到高维空间就可以线性可分,如(图六)所示的线性不可分的样本:


(图六)

         在(图六)中,现有的样本是很明显线性不可分,但是加入我们利用现有的样本X之间作些不同的运算,如(图六)右边所示的样子,而让f作为新的样本(或者说新的特征)是不是更好些?现在把X已经投射到高维度上去了,但是f我们不知道,此时核函数就该上场了,以高斯核函数为例,在(图七)中选几个样本点作为基准点,来利用核函数计算f,如(图七)所示:


(图七)

       这样就有了f,而核函数此时相当于对样本的X和基准点一个度量,做权重衰减,形成依赖于x的新的特征f,把f放在上面说的SVM中继续求解alpha,然后得出权重就行了,原理很简单吧,为了显得有点学术味道,把核函数也做个样子加入目标函数中去吧,如(公式十一)所示:

 

(公式十一) 

        其中K(Xn,Xm)是核函数,和上面目标函数比没有多大的变化,用SMO优化求解就行了,代码如下:

def smoPK(dataMatIn, classLabels, C, toler, maxIter): #full Platt SMO  oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler)  iter = 0  entireSet = True; alphaPairsChanged = 0  while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):   alphaPairsChanged = 0   if entireSet: #go over all    for i in range(oS.m):       alphaPairsChanged += innerL(i,oS)     print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)    iter += 1   else:#go over non-bound (railed) alphas    nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]    for i in nonBoundIs:     alphaPairsChanged += innerL(i,oS)     print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)    iter += 1   if entireSet: entireSet = False #toggle entire set loop   elif (alphaPairsChanged == 0): entireSet = True   print "iteration number: %d" % iter  return oS.b,oS.alphas 

下面演示一个小例子,手写识别。

      (1)收集数据:提供文本文件

      (2)准备数据:基于二值图像构造向量

      (3)分析数据:对图像向量进行目测

      (4)训练算法:采用两种不同的核函数,并对径向基函数采用不同的设置来运行SMO算法。

       (5)测试算法:编写一个函数来测试不同的核函数,并计算错误率

       (6)使用算法:一个图像识别的完整应用还需要一些图像处理的只是,此demo略。

完整代码如下:

from numpy import * from time import sleep  def loadDataSet(fileName):  dataMat = []; labelMat = []  fr = open(fileName)  for line in fr.readlines():   lineArr = line.strip().split('\t')   dataMat.append([float(lineArr[0]), float(lineArr[1])])   labelMat.append(float(lineArr[2]))  return dataMat,labelMat  def selectJrand(i,m):  j=i #we want to select any J not equal to i  while (j==i):   j = int(random.uniform(0,m))  return j  def clipAlpha(aj,H,L):  if aj > H:   aj = H  if L > aj:   aj = L  return aj  def smoSimple(dataMatIn, classLabels, C, toler, maxIter):  dataMatrix = mat(dataMatIn); labelMat = mat(classLabels).transpose()  b = 0; m,n = shape(dataMatrix)  alphas = mat(zeros((m,1)))  iter = 0  while (iter < maxIter):   alphaPairsChanged = 0   for i in range(m):    fXi = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[i,:].T)) + b    Ei = fXi - float(labelMat[i])#if checks if an example violates KKT conditions    if ((labelMat[i]*Ei < -toler) and (alphas[i] < C)) or ((labelMat[i]*Ei > toler) and (alphas[i] > 0)):     j = selectJrand(i,m)     fXj = float(multiply(alphas,labelMat).T*(dataMatrix*dataMatrix[j,:].T)) + b     Ej = fXj - float(labelMat[j])     alphaIold = alphas[i].copy(); alphaJold = alphas[j].copy();     if (labelMat[i] != labelMat[j]):      L = max(0, alphas[j] - alphas[i])      H = min(C, C + alphas[j] - alphas[i])     else:      L = max(0, alphas[j] + alphas[i] - C)      H = min(C, alphas[j] + alphas[i])     if L==H: print "L==H"; continue     eta = 2.0 * dataMatrix[i,:]*dataMatrix[j,:].T - dataMatrix[i,:]*dataMatrix[i,:].T - dataMatrix[j,:]*dataMatrix[j,:].T     if eta >= 0: print "eta>=0"; continue     alphas[j] -= labelMat[j]*(Ei - Ej)/eta     alphas[j] = clipAlpha(alphas[j],H,L)     if (abs(alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; continue     alphas[i] += labelMat[j]*labelMat[i]*(alphaJold - alphas[j])#update i by the same amount as j       #the update is in the oppostie direction     b1 = b - Ei- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[i,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[i,:]*dataMatrix[j,:].T     b2 = b - Ej- labelMat[i]*(alphas[i]-alphaIold)*dataMatrix[i,:]*dataMatrix[j,:].T - labelMat[j]*(alphas[j]-alphaJold)*dataMatrix[j,:]*dataMatrix[j,:].T     if (0 < alphas[i]) and (C > alphas[i]): b = b1     elif (0 < alphas[j]) and (C > alphas[j]): b = b2     else: b = (b1 + b2)/2.0     alphaPairsChanged += 1     print "iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)   if (alphaPairsChanged == 0): iter += 1   else: iter = 0   print "iteration number: %d" % iter  return b,alphas  def kernelTrans(X, A, kTup): #calc the kernel or transform data to a higher dimensional space  m,n = shape(X)  K = mat(zeros((m,1)))  if kTup[0]=='lin': K = X * A.T #linear kernel  elif kTup[0]=='rbf':   for j in range(m):    deltaRow = X[j,:] - A    K[j] = deltaRow*deltaRow.T   K = exp(K/(-1*kTup[1]**2)) #divide in NumPy is element-wise not matrix like Matlab  else: raise NameError('Houston We Have a Problem -- \  That Kernel is not recognized')  return K  class optStruct:  def __init__(self,dataMatIn, classLabels, C, toler, kTup): # Initialize the structure with the parameters   self.X = dataMatIn   self.labelMat = classLabels   self.C = C   self.tol = toler   self.m = shape(dataMatIn)[0]   self.alphas = mat(zeros((self.m,1)))   self.b = 0   self.eCache = mat(zeros((self.m,2))) #first column is valid flag   self.K = mat(zeros((self.m,self.m)))   for i in range(self.m):    self.K[:,i] = kernelTrans(self.X, self.X[i,:], kTup)    def calcEk(oS, k):  fXk = float(multiply(oS.alphas,oS.labelMat).T*oS.K[:,k] + oS.b)  Ek = fXk - float(oS.labelMat[k])  return Ek    def selectJ(i, oS, Ei):   #this is the second choice -heurstic, and calcs Ej  maxK = -1; maxDeltaE = 0; Ej = 0  oS.eCache[i] = [1,Ei] #set valid #choose the alpha that gives the maximum delta E  validEcacheList = nonzero(oS.eCache[:,0].A)[0]  if (len(validEcacheList)) > 1:   for k in validEcacheList: #loop through valid Ecache values and find the one that maximizes delta E    if k == i: continue #don't calc for i, waste of time    Ek = calcEk(oS, k)    deltaE = abs(Ei - Ek)    if (deltaE > maxDeltaE):     maxK = k; maxDeltaE = deltaE; Ej = Ek   return maxK, Ej  else: #in this case (first time around) we don't have any valid eCache values   j = selectJrand(i, oS.m)   Ej = calcEk(oS, j)  return j, Ej  def updateEk(oS, k):#after any alpha has changed update the new value in the cache  Ek = calcEk(oS, k)  oS.eCache[k] = [1,Ek]    def innerL(i, oS):  Ei = calcEk(oS, i)  if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):   j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand   alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();   if (oS.labelMat[i] != oS.labelMat[j]):    L = max(0, oS.alphas[j] - oS.alphas[i])    H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])   else:    L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)    H = min(oS.C, oS.alphas[j] + oS.alphas[i])   if L==H: print "L==H"; return 0   eta = 2.0 * oS.K[i,j] - oS.K[i,i] - oS.K[j,j] #changed for kernel   if eta >= 0: print "eta>=0"; return 0   oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta   oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)   updateEk(oS, j) #added this for the Ecache   if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0   oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j   updateEk(oS, i) #added this for the Ecache     #the update is in the oppostie direction   b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,i] - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[i,j]   b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.K[i,j]- oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.K[j,j]   if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1   elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2   else: oS.b = (b1 + b2)/2.0   return 1  else: return 0  def smoP(dataMatIn, classLabels, C, toler, maxIter,kTup=('lin', 0)): #full Platt SMO  oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler, kTup)  iter = 0  entireSet = True; alphaPairsChanged = 0  while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):   alphaPairsChanged = 0   if entireSet: #go over all    for i in range(oS.m):       alphaPairsChanged += innerL(i,oS)     print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)    iter += 1   else:#go over non-bound (railed) alphas    nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]    for i in nonBoundIs:     alphaPairsChanged += innerL(i,oS)     print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)    iter += 1   if entireSet: entireSet = False #toggle entire set loop   elif (alphaPairsChanged == 0): entireSet = True   print "iteration number: %d" % iter  return oS.b,oS.alphas  def calcWs(alphas,dataArr,classLabels):  X = mat(dataArr); labelMat = mat(classLabels).transpose()  m,n = shape(X)  w = zeros((n,1))  for i in range(m):   w += multiply(alphas[i]*labelMat[i],X[i,:].T)  return w  def testRbf(k1=1.3):  dataArr,labelArr = loadDataSet('testSetRBF.txt')  b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, ('rbf', k1)) #C=200 important  datMat=mat(dataArr); labelMat = mat(labelArr).transpose()  svInd=nonzero(alphas.A>0)[0]  sVs=datMat[svInd] #get matrix of only support vectors  labelSV = labelMat[svInd];  print "there are %d Support Vectors" % shape(sVs)[0]  m,n = shape(datMat)  errorCount = 0  for i in range(m):   kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))   predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b   if sign(predict)!=sign(labelArr[i]): errorCount += 1  print "the training error rate is: %f" % (float(errorCount)/m)  dataArr,labelArr = loadDataSet('testSetRBF2.txt')  errorCount = 0  datMat=mat(dataArr); labelMat = mat(labelArr).transpose()  m,n = shape(datMat)  for i in range(m):   kernelEval = kernelTrans(sVs,datMat[i,:],('rbf', k1))   predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b   if sign(predict)!=sign(labelArr[i]): errorCount += 1   print "the test error rate is: %f" % (float(errorCount)/m)    def img2vector(filename):  returnVect = zeros((1,1024))  fr = open(filename)  for i in range(32):   lineStr = fr.readline()   for j in range(32):    returnVect[0,32*i+j] = int(lineStr[j])  return returnVect  def loadImages(dirName):  from os import listdir  hwLabels = []  trainingFileList = listdir(dirName)   #load the training set  m = len(trainingFileList)  trainingMat = zeros((m,1024))  for i in range(m):   fileNameStr = trainingFileList[i]   fileStr = fileNameStr.split('.')[0]  #take off .txt   classNumStr = int(fileStr.split('_')[0])   if classNumStr == 9: hwLabels.append(-1)   else: hwLabels.append(1)   trainingMat[i,:] = img2vector('%s/%s' % (dirName, fileNameStr))  return trainingMat, hwLabels   def testDigits(kTup=('rbf', 10)):  dataArr,labelArr = loadImages('trainingDigits')  b,alphas = smoP(dataArr, labelArr, 200, 0.0001, 10000, kTup)  datMat=mat(dataArr); labelMat = mat(labelArr).transpose()  svInd=nonzero(alphas.A>0)[0]  sVs=datMat[svInd]  labelSV = labelMat[svInd];  print "there are %d Support Vectors" % shape(sVs)[0]  m,n = shape(datMat)  errorCount = 0  for i in range(m):   kernelEval = kernelTrans(sVs,datMat[i,:],kTup)   predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b   if sign(predict)!=sign(labelArr[i]): errorCount += 1  print "the training error rate is: %f" % (float(errorCount)/m)  dataArr,labelArr = loadImages('testDigits')  errorCount = 0  datMat=mat(dataArr); labelMat = mat(labelArr).transpose()  m,n = shape(datMat)  for i in range(m):   kernelEval = kernelTrans(sVs,datMat[i,:],kTup)   predict=kernelEval.T * multiply(labelSV,alphas[svInd]) + b   if sign(predict)!=sign(labelArr[i]): errorCount += 1   print "the test error rate is: %f" % (float(errorCount)/m)   '''''#######******************************** Non-Kernel VErsions below '''#######********************************  class optStructK:  def __init__(self,dataMatIn, classLabels, C, toler): # Initialize the structure with the parameters   self.X = dataMatIn   self.labelMat = classLabels   self.C = C   self.tol = toler   self.m = shape(dataMatIn)[0]   self.alphas = mat(zeros((self.m,1)))   self.b = 0   self.eCache = mat(zeros((self.m,2))) #first column is valid flag    def calcEkK(oS, k):  fXk = float(multiply(oS.alphas,oS.labelMat).T*(oS.X*oS.X[k,:].T)) + oS.b  Ek = fXk - float(oS.labelMat[k])  return Ek    def selectJK(i, oS, Ei):   #this is the second choice -heurstic, and calcs Ej  maxK = -1; maxDeltaE = 0; Ej = 0  oS.eCache[i] = [1,Ei] #set valid #choose the alpha that gives the maximum delta E  validEcacheList = nonzero(oS.eCache[:,0].A)[0]  if (len(validEcacheList)) > 1:   for k in validEcacheList: #loop through valid Ecache values and find the one that maximizes delta E    if k == i: continue #don't calc for i, waste of time    Ek = calcEk(oS, k)    deltaE = abs(Ei - Ek)    if (deltaE > maxDeltaE):     maxK = k; maxDeltaE = deltaE; Ej = Ek   return maxK, Ej  else: #in this case (first time around) we don't have any valid eCache values   j = selectJrand(i, oS.m)   Ej = calcEk(oS, j)  return j, Ej  def updateEkK(oS, k):#after any alpha has changed update the new value in the cache  Ek = calcEk(oS, k)  oS.eCache[k] = [1,Ek]    def innerLK(i, oS):  Ei = calcEk(oS, i)  if ((oS.labelMat[i]*Ei < -oS.tol) and (oS.alphas[i] < oS.C)) or ((oS.labelMat[i]*Ei > oS.tol) and (oS.alphas[i] > 0)):   j,Ej = selectJ(i, oS, Ei) #this has been changed from selectJrand   alphaIold = oS.alphas[i].copy(); alphaJold = oS.alphas[j].copy();   if (oS.labelMat[i] != oS.labelMat[j]):    L = max(0, oS.alphas[j] - oS.alphas[i])    H = min(oS.C, oS.C + oS.alphas[j] - oS.alphas[i])   else:    L = max(0, oS.alphas[j] + oS.alphas[i] - oS.C)    H = min(oS.C, oS.alphas[j] + oS.alphas[i])   if L==H: print "L==H"; return 0   eta = 2.0 * oS.X[i,:]*oS.X[j,:].T - oS.X[i,:]*oS.X[i,:].T - oS.X[j,:]*oS.X[j,:].T   if eta >= 0: print "eta>=0"; return 0   oS.alphas[j] -= oS.labelMat[j]*(Ei - Ej)/eta   oS.alphas[j] = clipAlpha(oS.alphas[j],H,L)   updateEk(oS, j) #added this for the Ecache   if (abs(oS.alphas[j] - alphaJold) < 0.00001): print "j not moving enough"; return 0   oS.alphas[i] += oS.labelMat[j]*oS.labelMat[i]*(alphaJold - oS.alphas[j])#update i by the same amount as j   updateEk(oS, i) #added this for the Ecache     #the update is in the oppostie direction   b1 = oS.b - Ei- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[i,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[i,:]*oS.X[j,:].T   b2 = oS.b - Ej- oS.labelMat[i]*(oS.alphas[i]-alphaIold)*oS.X[i,:]*oS.X[j,:].T - oS.labelMat[j]*(oS.alphas[j]-alphaJold)*oS.X[j,:]*oS.X[j,:].T   if (0 < oS.alphas[i]) and (oS.C > oS.alphas[i]): oS.b = b1   elif (0 < oS.alphas[j]) and (oS.C > oS.alphas[j]): oS.b = b2   else: oS.b = (b1 + b2)/2.0   return 1  else: return 0  def smoPK(dataMatIn, classLabels, C, toler, maxIter): #full Platt SMO  oS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler)  iter = 0  entireSet = True; alphaPairsChanged = 0  while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):   alphaPairsChanged = 0   if entireSet: #go over all    for i in range(oS.m):       alphaPairsChanged += innerL(i,oS)     print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)    iter += 1   else:#go over non-bound (railed) alphas    nonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]    for i in nonBoundIs:     alphaPairsChanged += innerL(i,oS)     print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)    iter += 1   if entireSet: entireSet = False #toggle entire set loop   elif (alphaPairsChanged == 0): entireSet = True   print "iteration number: %d" % iter  return oS.b,oS.alphas 

运行结果如(图八)所示:


(图八)

上面代码有兴趣的可以读读,用的话,建议使用libsvm。

参考文献:

    [1]machine learning in action. PeterHarrington

    [2] pattern recognition and machinelearning. Christopher M. Bishop

    [3]machine learning.Andrew Ng

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    python机器学习理论与实战(一)K近邻法
    下一条:
    Python logging管理不同级别log打印和存储实例
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在windows10中升级go版本至1.24后LiteIDE的Ctrl+左击无法跳转问题解决方案(0个评论)
    • 智能合约Solidity学习CryptoZombie第四课:僵尸作战系统(0个评论)
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(95个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客