侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

Python爬虫实例_城市公交网络站点数据的爬取方法

Python  /  管理员 发布于 7年前   402

爬取的站点:http://beijing.8684.cn/

(1)环境配置,直接上代码:

# -*- coding: utf-8 -*-import requests ##导入requestsfrom bs4 import BeautifulSoup ##导入bs4中的BeautifulSoupimport osheaders = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.221 Safari/537.36 SE 2.X MetaSr 1.0'}all_url = 'http://beijing.8684.cn' ##开始的URL地址start_html = requests.get(all_url, headers=headers) #print (start_html.text)Soup = BeautifulSoup(start_html.text, 'lxml') # 以lxml的方式解析html文档

(2)爬取站点分析

1、北京市公交线路分类方式有3种:

本文通过数字开头来进行爬取,“F12”启动开发者工具,点击“Elements”,点击“1”,可以发现链接保存在<div class="bus_kt_r1">里面,故只需要提取出div里的href即可:

代码:

all_a = Soup.find(‘div',class_='bus_kt_r1').find_all(‘a')

2、接着往下,发现每1路的链接都在<div id="con_site_1" class="site_list"> 的<a>里面,取出里面的herf即为线路网址,其内容即为线路名称,代码:

href = a['href'] #取出a标签的href 属性html = all_url + hrefsecond_html = requests.get(html,headers=headers)#print (second_html.text)Soup2 = BeautifulSoup(second_html.text, 'lxml') all_a2 = Soup2.find('div',class_='cc_content').find_all('div')[-1].find_all('a') # 既有id又有class的div不知道为啥取不出来,只好迂回取了

3、打开线路链接,就可以看到具体的站点信息了,打开页面分析文档结构后发现:线路的基本信息存放在<div class="bus_i_content">里面,而公交站点信息则存放在<div class="bus_line_top">及<div class="bus_line_site">里面,提取代码:

title1 = a2.get_text() #取出a1标签的文本href1 = a2['href'] #取出a标签的href 属性#print (title1,href1)html_bus = all_url + href1 # 构建线路站点urlthrid_html = requests.get(html_bus,headers=headers)Soup3 = BeautifulSoup(thrid_html.text, 'lxml') bus_name = Soup3.find('div',class_='bus_i_t1').find('h1').get_text() # 提取线路名bus_type = Soup3.find('div',class_='bus_i_t1').find('a').get_text() # 提取线路属性bus_time = Soup3.find_all('p',class_='bus_i_t4')[0].get_text() # 运行时间bus_cost = Soup3.find_all('p',class_='bus_i_t4')[1].get_text() # 票价bus_company = Soup3.find_all('p',class_='bus_i_t4')[2].find('a').get_text() # 公交公司bus_update = Soup3.find_all('p',class_='bus_i_t4')[3].get_text() # 更新时间bus_label = Soup3.find('div',class_='bus_label')if bus_label: bus_length = bus_label.get_text() # 线路里程else: bus_length = []#print (bus_name,bus_type,bus_time,bus_cost,bus_company,bus_update)all_line = Soup3.find_all('div',class_='bus_line_top') # 线路简介all_site = Soup3.find_all('div',class_='bus_line_site')# 公交站点line_x = all_line[0].find('div',class_='bus_line_txt').get_text()[:-9]+all_line[0].find_all('span')[-1].get_text()sites_x = all_site[0].find_all('a')sites_x_list = [] # 上行线路站点for site_x in sites_x: sites_x_list.append(site_x.get_text())line_num = len(all_line)if line_num==2: # 如果存在环线,也返回两个list,只是其中一个为空 line_y = all_line[1].find('div',class_='bus_line_txt').get_text()[:-9]+all_line[1].find_all('span')[-1].get_text() sites_y = all_site[1].find_all('a') sites_y_list = [] # 下行线路站点 for site_y in sites_y: sites_y_list.append(site_y.get_text())else: line_y,sites_y_list=[],[]information = [bus_name,bus_type,bus_time,bus_cost,bus_company,bus_update,bus_length,line_x,sites_x_list,line_y,sites_y_list]

自此,我们就把一条线路的相关信息及上、下行站点信息就都解析出来了。如果想要爬取全市的公交网络站点,只需要加入循环就可以了。

完整代码:

# -*- coding: utf-8 -*-# Python3.5import requests ##导入requestsfrom bs4 import BeautifulSoup ##导入bs4中的BeautifulSoupimport osheaders = {'User-Agent':'Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/49.0.2623.221 Safari/537.36 SE 2.X MetaSr 1.0'}all_url = 'http://beijing.8684.cn' ##开始的URL地址start_html = requests.get(all_url, headers=headers) #print (start_html.text)Soup = BeautifulSoup(start_html.text, 'lxml')all_a = Soup.find('div',class_='bus_kt_r1').find_all('a')Network_list = []for a in all_a: href = a['href'] #取出a标签的href 属性 html = all_url + href second_html = requests.get(html,headers=headers) #print (second_html.text) Soup2 = BeautifulSoup(second_html.text, 'lxml')  all_a2 = Soup2.find('div',class_='cc_content').find_all('div')[-1].find_all('a') # 既有id又有class的div不知道为啥取不出来,只好迂回取了 for a2 in all_a2: title1 = a2.get_text() #取出a1标签的文本 href1 = a2['href'] #取出a标签的href 属性 #print (title1,href1) html_bus = all_url + href1 thrid_html = requests.get(html_bus,headers=headers) Soup3 = BeautifulSoup(thrid_html.text, 'lxml')  bus_name = Soup3.find('div',class_='bus_i_t1').find('h1').get_text() bus_type = Soup3.find('div',class_='bus_i_t1').find('a').get_text() bus_time = Soup3.find_all('p',class_='bus_i_t4')[0].get_text() bus_cost = Soup3.find_all('p',class_='bus_i_t4')[1].get_text() bus_company = Soup3.find_all('p',class_='bus_i_t4')[2].find('a').get_text() bus_update = Soup3.find_all('p',class_='bus_i_t4')[3].get_text() bus_label = Soup3.find('div',class_='bus_label') if bus_label:  bus_length = bus_label.get_text() else:  bus_length = [] #print (bus_name,bus_type,bus_time,bus_cost,bus_company,bus_update) all_line = Soup3.find_all('div',class_='bus_line_top') all_site = Soup3.find_all('div',class_='bus_line_site') line_x = all_line[0].find('div',class_='bus_line_txt').get_text()[:-9]+all_line[0].find_all('span')[-1].get_text() sites_x = all_site[0].find_all('a') sites_x_list = [] for site_x in sites_x:  sites_x_list.append(site_x.get_text()) line_num = len(all_line) if line_num==2: # 如果存在环线,也返回两个list,只是其中一个为空  line_y = all_line[1].find('div',class_='bus_line_txt').get_text()[:-9]+all_line[1].find_all('span')[-1].get_text()  sites_y = all_site[1].find_all('a')  sites_y_list = []  for site_y in sites_y:  sites_y_list.append(site_y.get_text()) else:  line_y,sites_y_list=[],[] information = [bus_name,bus_type,bus_time,bus_cost,bus_company,bus_update,bus_length,line_x,sites_x_list,line_y,sites_y_list] Network_list.append(information)# 定义保存函数,将运算结果保存为txt文件def text_save(content,filename,mode='a'): # Try to save a list variable in txt file. file = open(filename,mode) for i in range(len(content)): file.write(str(content[i])+'\n') file.close()# 输出处理后的数据 text_save(Network_list,'Network_bus.txt'); 

最后输出整个城市的公交网络站点信息,这次就先保存在txt文件里吧,也可以保存到数据库里,比如mysql或者MongoDB里,这里我就不写了,有兴趣的可以试一下,附上程序运行后的结果图:

以上这篇Python爬虫实例_城市公交网络站点数据的爬取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


  • 上一条:
    Python设计模式之观察者模式简单示例
    下一条:
    Python爬虫_城市公交、地铁站点和线路数据采集实例
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 智能合约Solidity学习CryptoZombie第四课:僵尸作战系统(0个评论)
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客