侯体宗的博客
  • 首页
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

Python机器学习之决策树算法

Python  /  管理员 发布于 7年前   175

一、决策树原理

决策树是用样本的属性作为结点,用属性的取值作为分支的树结构。
决策树的根结点是所有样本中信息量最大的属性。树的中间结点是该结点为根的子树所包含的样本子集中信息量最大的属性。决策树的叶结点是样本的类别值。决策树是一种知识表示形式,它是对所有样本数据的高度概括决策树能准确地识别所有样本的类别,也能有效地识别新样本的类别。 

决策树算法ID3的基本思想:

首先找出最有判别力的属性,把样例分成多个子集,每个子集又选择最有判别力的属性进行划分,一直进行到所有子集仅包含同一类型的数据为止。最后得到一棵决策树。

J.R.Quinlan的工作主要是引进了信息论中的信息增益,他将其称为信息增益(information gain),作为属性判别能力的度量,设计了构造决策树的递归算法。

举例子比较容易理解:

对于气候分类问题,属性为:
天气(A1) 取值为: 晴,多云,雨
气温(A2)  取值为: 冷 ,适中,热
湿度(A3)  取值为: 高 ,正常
风 (A4)  取值为: 有风, 无风

每个样例属于不同的类别,此例仅有两个类别,分别为P,N。P类和N类的样例分别称为正例和反例。将一些已知的正例和反例放在一起便得到训练集。
由ID3算法得出一棵正确分类训练集中每个样例的决策树,见下图。

决策树叶子为类别名,即P 或者N。其它结点由样例的属性组成,每个属性的不同取值对应一分枝。
若要对一样例分类,从树根开始进行测试,按属性的取值分枝向下进入下层结点,对该结点进行测试,过程一直进行到叶结点,样例被判为属于该叶结点所标记的类别。
现用图来判一个具体例子,
某天早晨气候描述为:
天气:多云
气温:冷
湿度:正常
风: 无风

它属于哪类气候呢?-------------从图中可判别该样例的类别为P类。 

ID3就是要从表的训练集构造图这样的决策树。实际上,能正确分类训练集的决策树不止一棵。Quinlan的ID3算法能得出结点最少的决策树。

ID3算法:

     1. 对当前例子集合,计算各属性的信息增益;
     2. 选择信息增益最大的属性Ak;
     3. 把在Ak处取值相同的例子归于同一子集,Ak取几个值就得几个子集;
     4.对既含正例又含反例的子集,递归调用建树算法;
     5. 若子集仅含正例或反例,对应分枝标上P或N,返回调用处。

一般只要涉及到树的情况,经常会要用到递归。 

对于气候分类问题进行具体计算有:
1、 信息熵的计算: 其中S是样例的集合, P(ui)是类别i出现概率:

|S|表示例子集S的总数,|ui|表示类别ui的例子数。对9个正例和5个反例有:
P(u1)=9/14
P(u2)=5/14
H(S)=(9/14)log(14/9)+(5/14)log(14/5)=0.94bit 

2、信息增益的计算:

其中A是属性,Value(A)是属性A取值的集合,v是A的某一属性值,Sv是S中A的值为v的样例集合,| Sv |为Sv中所含样例数。

以属性A1为例,根据信息增益的计算公式,属性A1的信息增益为

S=[9+,5-] //原样例集中共有14个样例,9个正例,5个反例
S晴=[2+,3-]//属性A1取值晴的样例共5个,2正,3反
S多云=[4+,0-] //属性A1取值多云的样例共4个,4正,0反
S雨=[3+,2-] //属性A1取值晴的样例共5个,3正,2反
故 

3、结果为

属性A1的信息增益最大,所以被选为根结点。

4、建决策树的根和叶子

ID3算法将选择信息增益最大的属性天气作为树根,在14个例子中对天气的3个取值进行分枝,3 个分枝对应3 个子集,分别是:

其中S2中的例子全属于P类,因此对应分枝标记为P,其余两个子集既含有正例又含有反例,将递归调用建树算法。

5、递归建树

分别对S1和S3子集递归调用ID3算法,在每个子集中对各属性求信息增益.
(1)对S1,湿度属性信息增益最大,以它为该分枝的根结点,再向下分枝。湿度取高的例子全为N类,该分枝标记N。取值正常的例子全为P类,该分枝标记P。
(2)对S3,风属性信息增益最大,则以它为该分枝根结点。再向下分枝,风取有风时全为N类,该分枝标记N。取无风时全为P类,该分枝标记P。

二、PYTHON实现决策树算法分类

本代码为machine learning in action 第三章例子,亲测无误。
 1、计算给定数据shangnon数据的函数:

def calcShannonEnt(dataSet):  #calculate the shannon value  numEntries = len(dataSet)  labelCounts = {}  for featVec in dataSet:  #create the dictionary for all of the data   currentLabel = featVec[-1]   if currentLabel not in labelCounts.keys():    labelCounts[currentLabel] = 0   labelCounts[currentLabel] += 1  shannonEnt = 0.0  for key in labelCounts:   prob = float(labelCounts[key])/numEntries   shannonEnt -= prob*log(prob,2) #get the log value  return shannonEnt 

 2. 创建数据的函数

def createDataSet():  dataSet = [[1,1,'yes'],     [1,1, 'yes'],     [1,0,'no'],     [0,1,'no'],     [0,1,'no']]  labels = ['no surfacing','flippers']  return dataSet, labels 

3.划分数据集,按照给定的特征划分数据集

def splitDataSet(dataSet, axis, value):  retDataSet = []  for featVec in dataSet:   if featVec[axis] == value:  #abstract the fature    reducedFeatVec = featVec[:axis]    reducedFeatVec.extend(featVec[axis+1:])    retDataSet.append(reducedFeatVec)  return retDataSet 

4.选择最好的数据集划分方式

def chooseBestFeatureToSplit(dataSet):  numFeatures = len(dataSet[0])-1  baseEntropy = calcShannonEnt(dataSet)  bestInfoGain = 0.0; bestFeature = -1  for i in range(numFeatures):   featList = [example[i] for example in dataSet]   uniqueVals = set(featList)   newEntropy = 0.0   for value in uniqueVals:    subDataSet = splitDataSet(dataSet, i , value)    prob = len(subDataSet)/float(len(dataSet))    newEntropy +=prob * calcShannonEnt(subDataSet)   infoGain = baseEntropy - newEntropy   if(infoGain > bestInfoGain):    bestInfoGain = infoGain    bestFeature = i  return bestFeature 

5.递归创建树

用于找出出现次数最多的分类名称的函数

def majorityCnt(classList):  classCount = {}  for vote in classList:   if vote not in classCount.keys(): classCount[vote] = 0   classCount[vote] += 1  sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)  return sortedClassCount[0][0] 

用于创建树的函数代码

def createTree(dataSet, labels):  classList = [example[-1] for example in dataSet]  # the type is the same, so stop classify  if classList.count(classList[0]) == len(classList):   return classList[0]  # traversal all the features and choose the most frequent feature  if (len(dataSet[0]) == 1):   return majorityCnt(classList)  bestFeat = chooseBestFeatureToSplit(dataSet)  bestFeatLabel = labels[bestFeat]  myTree = {bestFeatLabel:{}}  del(labels[bestFeat])  #get the list which attain the whole properties  featValues = [example[bestFeat] for example in dataSet]  uniqueVals = set(featValues)  for value in uniqueVals:   subLabels = labels[:]   myTree[bestFeatLabel][value] = createTree(splitDataSet(dataSet, bestFeat, value), subLabels)  return myTree 

然后是在python 名利提示符号输入如下命令:

myDat, labels = trees.createDataSet() myTree = trees.createTree(myDat,labels) print myTree 

结果是:
{'no surfacing': {0: 'no', 1: {'flippers': {0: 'no', 1: 'yes'}}}}

6.实用决策树进行分类的函数

def classify(inputTree, featLabels, testVec):  firstStr = inputTree.keys()[0]  secondDict = inputTree[firstStr]  featIndex = featLabels.index(firstStr)  for key in secondDict.keys():   if testVec[featIndex] == key:    if type(secondDict[key]).__name__ == 'dict':     classLabel = classify(secondDict[key], featLabels, testVec)    else: classLabel = secondDict[key]  return classLabel 

在Python命令提示符,输入:
trees.classify(myTree,labels,[1,0]) 

得到结果:
'no'
Congratulation. Oh yeah. You did it.!!!

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    Python2.7下安装Scrapy框架步骤教程
    下一条:
    python+selenium实现登录账户后自动点击的示例
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在windows10中升级go版本至1.24后LiteIDE的Ctrl+左击无法跳转问题解决方案(0个评论)
    • 智能合约Solidity学习CryptoZombie第四课:僵尸作战系统(0个评论)
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(95个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客