侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

python实现感知器算法详解

Python  /  管理员 发布于 7年前   148

在1943年,沃伦麦卡洛可与沃尔特皮茨提出了第一个脑神经元的抽象模型,简称麦卡洛可-皮茨神经元(McCullock-Pitts neuron)简称MCP,大脑神经元的结构如下图。麦卡洛可和皮茨将神经细胞描述为一个具备二进制输出的逻辑门。树突接收多个输入信号,当输入信号累加超过一定的值(阈值),就会产生一个输出信号。弗兰克罗森布拉特基于MCP神经元提出了第一个感知器学习算法,同时它还提出了一个自学习算法,此算法可以通过对输入信号和输出信号的学习,自动的获取到权重系数,通过输入信号与权重系数的乘积来判断神经元是否被激活(产生输出信号)。


一、感知器算法

我们将输入信号定义为一个x向量,x=(x1,x2,x3..),将权重定义为ω=(ω1,ω2,ω3...)其中ω0的值为,将z定义为为两个向量之间的乘积,所以输出z=x1*ω1 + x2*ω2+....,然后将z通过激励(激活)函数,作为真正的输出。其中激活函数是一个分段函数,下图是一个阶跃函数,当输入信号大于0的时候输出为1,小于0的时候输出为0,这里的阶跃函数阈值设置为0了。定义激活函数为Φ(z),给激活函数Φ(z)设定一个阈值θ,当激活函数的输出大于阈值θ的时候,将输出划分为正类(1),小于阈值θ的时候将输出划分为负类(-1)。如果,将阈值θ移到等式的左边z=x1*ω1+x2*ω2+....+θ,我们可以将θ看作为θ=x0*ω0,其中输出x0为1,ω0为-θ。将阈值θ移到等式的左边之后,就相当于激活函数的阈值由原来的θ变成了0。


感知器算法的工作过程:

1、将权重ω初始化为零或一个极小的随机数。

2、迭代所有的训练样本(已知输入和输出),执行如下操作:

a、通过权重和已知的输入计算输出

b、通过a中的输出与已知输入的输出来更新权重


权重的更新过程,如上图的公式,其中ω与x都是相对应的(当ω为ω0的时候,x为1),η为学习率介于0到1之间的常数,其中y为输入所对应的输出,后面的y(打不出来)为a中所计算出来的输出。通过迭代对权重的更新,当遇到类标预测错误的情况下,权重的值会趋于正类别和负类别的方向。


第一个公式表示的是,当真实的输出为1的情况下,而预测值为-1,所以我们就需要增加权重来使得预测值往1靠近。

第二个公式表示的是,当真实的输出为-1的情况下,而预测值为1,所以我们就需要减少权重来使得预测值往-1靠近。

注意:感知器收敛的前提是两个类别必须是线性可分的,且学习率足够小。如果两个类别无法通过一个线性决策边界进行划分,我们可以设置一个迭代次数或者一个判断错误样本的阈值,否则感知器算法会一直运行下去。


最后,用一张图来表示感知器算法的工作过程


二、python实现感知器算法

import numpy as np  class Perceptron(object):   '''''   输入参数:   eta:学习率,在0~1之间,默认为0.01   n_iter:设置迭代的次数,默认为10   属性:   w_:一维数组,模型的权重   errors_:列表,被错误分类的数据   '''   #初始化对象   def __init__(self,eta=0.01,n_iter=10):     self.eta = eta     self.n_iter = n_iter   #根据输入的x和y训练模型   def fit(self,x,y):     #初始化权重     self.w_ = np.zeros(1 + x.shape[1])     #初始化错误列表     self.errors_=[]     #迭代输入数据,训练模型     for _ in range(self.n_iter):       errors = 0       for xi,target in zip(x,y):         #计算预测与实际值之间的误差在乘以学习率         update = self.eta * (target - self.predict(xi))         #更新权重         self.w_[1:] += update * xi         #更新W0         self.w_[0] += update * 1         #当预测值与实际值之间误差为0的时候,errors=0否则errors=1         errors += int(update != 0)       #将错误数据的下标加入到列表中       self.errors_.append(errors)     return self   #定义感知器的传播过程   def net_input(self,x):     #等价于sum(i*j for i,j in zip(x,self.w_[1:])),这种方式效率要低于下面     return np.dot(x,self.w_[1:]) + self.w_[0]   #定义预测函数   def predict(self,x):     #类似于三元运算符,当self.net_input(x) >= 0.0 成立时返回1,否则返回-1     return np.where(self.net_input(x) >= 0.0 , 1 , -1) 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    python绘制简单折线图代码示例
    下一条:
    python绘制条形图方法代码详解
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 智能合约Solidity学习CryptoZombie第四课:僵尸作战系统(0个评论)
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客