侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

使用python实现knn算法

Python  /  管理员 发布于 7年前   151

本文实例为大家分享了python实现knn算法的具体代码,供大家参考,具体内容如下

knn算法描述

对需要分类的点依次执行以下操作:
1.计算已知类别数据集中每个点与该点之间的距离
2.按照距离递增顺序排序
3.选取与该点距离最近的k个点
4.确定前k个点所在类别出现的频率
5.返回前k个点出现频率最高的类别作为该点的预测分类

knn算法实现

数据处理

#从文件中读取数据,返回的数据和分类均为二维数组def loadDataSet(filename):  dataSet = []  labels = []  fr = open(filename)  for line in fr.readlines():    lineArr = line.strip().split(",")    dataSet.append([float(lineArr[0]),float(lineArr[1])])    labels.append([float(lineArr[2])])  return dataSet , labels

knn算法

#计算两个向量之间的欧氏距离def calDist(X1 , X2):  sum = 0  for x1 , x2 in zip(X1 , X2):    sum += (x1 - x2) ** 2  return sum ** 0.5def knn(data , dataSet , labels , k):  n = shape(dataSet)[0]  for i in range(n):    dist = calDist(data , dataSet[i])    #只记录两点之间的距离和已知点的类别    labels[i].append(dist)  #按照距离递增排序  labels.sort(key=lambda x:x[1])  count = {}  #统计每个类别出现的频率  for i in range(k):    key = labels[i][0]    if count.has_key(key):      count[key] += 1    else : count[key] = 1  #按频率递减排序  sortCount = sorted(count.items(),key=lambda item:item[1],reverse=True)  return sortCount[0][0]#返回频率最高的key,即label

结果测试

已知类别数据(来源于西瓜书+虚构)

0.697,0.460,1
0.774,0.376,1
0.720,0.330,1
0.634,0.264,1
0.608,0.318,1
0.556,0.215,1
0.403,0.237,1
0.481,0.149,1
0.437,0.211,1
0.525,0.186,1
0.666,0.091,0
0.639,0.161,0
0.657,0.198,0
0.593,0.042,0
0.719,0.103,0
0.671,0.196,0
0.703,0.121,0
0.614,0.116,0

绘图方法

def drawPoints(data , dataSet, labels):  xcord1 = [];  ycord1 = [];  xcord2 = [];  ycord2 = [];  for i in range(shape(dataSet)[0]):    if labels[i][0] == 0:      xcord1.append(dataSet[i][0])      ycord1.append(dataSet[i][1])    if labels[i][0] == 1:      xcord2.append(dataSet[i][0])      ycord2.append(dataSet[i][1])  fig = plt.figure()  ax = fig.add_subplot(111)  ax.scatter(xcord1, ycord1, s=30, c='blue', marker='s',label=0)  ax.scatter(xcord2, ycord2, s=30, c='green',label=1)  ax.scatter(data[0], data[1], s=30, c='red',label="testdata")  plt.legend(loc='upper right')  plt.show()

测试代码

dataSet , labels = loadDataSet('dataSet.txt')data = [0.6767,0.2122]drawPoints(data , dataSet, labels)newlabels = knn(data, dataSet , labels , 5)print newlabels

运行结果

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。


  • 上一条:
    详解Python nose单元测试框架的安装与使用
    下一条:
    python实现kNN算法
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 智能合约Solidity学习CryptoZombie第四课:僵尸作战系统(0个评论)
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客