侯体宗的博客
  • 首页
  • Hyperf版
  • beego仿版
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

python中实现k-means聚类算法详解

Python  /  管理员 发布于 7年前   170

算法优缺点:

优点:容易实现
缺点:可能收敛到局部最小值,在大规模数据集上收敛较慢
使用数据类型:数值型数据

算法思想

k-means算法实际上就是通过计算不同样本间的距离来判断他们的相近关系的,相近的就会放到同一个类别中去。

1.首先我们需要选择一个k值,也就是我们希望把数据分成多少类,这里k值的选择对结果的影响很大,Ng的课说的选择方法有两种一种是elbow method,简单的说就是根据聚类的结果和k的函数关系判断k为多少的时候效果最好。另一种则是根据具体的需求确定,比如说进行衬衫尺寸的聚类你可能就会考虑分成三类(L,M,S)等

2.然后我们需要选择最初的聚类点(或者叫质心),这里的选择一般是随机选择的,代码中的是在数据范围内随机选择,另一种是随机选择数据中的点。这些点的选择会很大程度上影响到最终的结果,也就是说运气不好的话就到局部最小值去了。这里有两种处理方法,一种是多次取均值,另一种则是后面的改进算法(bisecting K-means)

3.终于我们开始进入正题了,接下来我们会把数据集中所有的点都计算下与这些质心的距离,把它们分到离它们质心最近的那一类中去。完成后我们则需要将每个簇算出平均值,用这个点作为新的质心。反复重复这两步,直到收敛我们就得到了最终的结果。

函数

loadDataSet(fileName)

从文件中读取数据集

distEclud(vecA, vecB)

计算距离,这里用的是欧氏距离,当然其他合理的距离都是可以的

randCent(dataSet, k)

随机生成初始的质心,这里是虽具选取数据范围内的点

kMeans(dataSet, k, distMeas=distEclud, createCent=randCent)

kmeans算法,输入数据和k值。后面两个事可选的距离计算方式和初始质心的选择方式

show(dataSet, k, centroids, clusterAssment)

可视化结果

#coding=utf-8from numpy import *def loadDataSet(fileName): dataMat = [] fr = open(fileName) for line in fr.readlines(): curLine = line.strip().split('\t') fltLine = map(float, curLine) dataMat.append(fltLine) return dataMat#计算两个向量的距离,用的是欧几里得距离def distEclud(vecA, vecB): return sqrt(sum(power(vecA - vecB, 2)))#随机生成初始的质心(ng的课说的初始方式是随机选K个点) def randCent(dataSet, k): n = shape(dataSet)[1] centroids = mat(zeros((k,n))) for j in range(n): minJ = min(dataSet[:,j]) rangeJ = float(max(array(dataSet)[:,j]) - minJ) centroids[:,j] = minJ + rangeJ * random.rand(k,1) return centroidsdef kMeans(dataSet, k, distMeas=distEclud, createCent=randCent): m = shape(dataSet)[0] clusterAssment = mat(zeros((m,2)))#create mat to assign data points      #to a centroid, also holds SE of each point centroids = createCent(dataSet, k) clusterChanged = True while clusterChanged: clusterChanged = False for i in range(m):#for each data point assign it to the closest centroid  minDist = inf  minIndex = -1  for j in range(k):  distJI = distMeas(centroids[j,:],dataSet[i,:])  if distJI < minDist:   minDist = distJI; minIndex = j  if clusterAssment[i,0] != minIndex:   clusterChanged = True  clusterAssment[i,:] = minIndex,minDist**2 print centroids for cent in range(k):#recalculate centroids  ptsInClust = dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]#get all the point in this cluster  centroids[cent,:] = mean(ptsInClust, axis=0) #assign centroid to mean  return centroids, clusterAssmentdef show(dataSet, k, centroids, clusterAssment): from matplotlib import pyplot as plt  numSamples, dim = dataSet.shape  mark = ['or', 'ob', 'og', 'ok', '^r', '+r', 'sr', 'dr', '<r', 'pr']  for i in xrange(numSamples):  markIndex = int(clusterAssment[i, 0])  plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])  mark = ['Dr', 'Db', 'Dg', 'Dk', '^b', '+b', 'sb', 'db', '<b', 'pb']  for i in range(k):  plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize = 12)  plt.show()def main(): dataMat = mat(loadDataSet('testSet.txt')) myCentroids, clustAssing= kMeans(dataMat,4) print myCentroids show(dataMat, 4, myCentroids, clustAssing)  if __name__ == '__main__': main()

这里是聚类结果,还是很不错的啦

但是有时候也会收敛到局部最小值,就像下面这样,就是不幸收敛到局部最优了

总结

以上就是本文关于python中实现k-means聚类算法详解的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站:

Python内存管理方式和垃圾回收算法解析

Python数据结构与算法之列表(链表,linked list)简单实现

Python算法之求n个节点不同二叉树个数

有什么问题可以随时留言,小编会及时回复大家的。感谢朋友们对本站的支持!


  • 上一条:
    python图像常规操作
    下一条:
    Python编程之基于概率论的分类方法:朴素贝叶斯
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf分页文件功能(0个评论)
    • gmail发邮件报错:534 5.7.9 Application-specific password required...解决方案(0个评论)
    • 欧盟关于强迫劳动的规定的官方举报渠道及官方举报网站(0个评论)
    • 在go语言中使用github.com/signintech/gopdf实现生成pdf文件功能(0个评论)
    • Laravel从Accel获得5700万美元A轮融资(0个评论)
    • 在go + gin中gorm实现指定搜索/区间搜索分页列表功能接口实例(0个评论)
    • 在go语言中实现IP/CIDR的ip和netmask互转及IP段形式互转及ip是否存在IP/CIDR(0个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客