侯体宗的博客
  • 首页
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

基于python爬虫数据处理(详解)

Python  /  管理员 发布于 7年前   332

一、首先理解下面几个函数

设置变量 length()函数 char_length() replace() 函数 max() 函数

1.1、设置变量 set @变量名=值

set @address='中国-山东省-聊城市-莘县';select @address

1.2 、length()函数 char_length()函数区别

select length('a'),char_length('a'),length('中'),char_length('中')

1.3、 replace() 函数 和length()函数组合

set @address='中国-山东省-聊城市-莘县';select @address,replace(@address,'-','') as address_1,length(@address) as len_add1,length(replace(@address,'-','')) as len_add2,length(@address)-length(replace(@address,'-','')) as _count

etl清洗字段时候有明显分割符的如何确定新的数据表增加几个分割出的字段

计算出com_industry中最多有几个 - 符 以便确定增加几个字段 最大值+1 为可以拆分成的字段数 此表为3 因此可以拆分出4个行业字段 也就是4个行业等级

select max(length(com_industry)-length(replace(com_industry,'-',''))) as _max_countfrom etl1_socom_data

1.4、设置变量 substring_index()字符串截取函数用法

set @address='中国-山东省-聊城市-莘县';select substring_index(@address,'-',1) as china,substring_index(substring_index(@address,'-',2),'-',-1) as province,substring_index(substring_index(@address,'-',3),'-',-1) as city,substring_index(@address,'-',-1) as district

1.5、条件判断函数 case when

case when then when then else 值 end as 字段名select case when 89>101 then '大于' else '小于' end as betl1_socom_data

二、kettle转换etl1清洗

首先建表 步骤在视频里

字段索引 没有提 索引算法建议用BTREE算法增强查询效率

2.1.kettle文件名:trans_etl1_socom_data

2.2.包括控件:表输入>>>表输出

2.3.数据流方向:s_socom_data>>>>etl1_socom_data

kettle转换1截图

2.4、表输入2.4、SQL脚本 初步清洗com_district和com_industry字段

select a.*,case when com_district like '%业' or com_district like '%织' or com_district like '%育' then null else com_district end as com_district1,case when com_district like '%业' or com_district like '%织' or com_district like '%育' then concat(com_district,'-',com_industry) else com_industry end as com_industry_total,replace(com_addr,'地 址:','') as com_addr1,replace(com_phone,'电 话:','') as com_phone1,replace(com_fax,'传 真:','') as com_fax1,replace(com_mobile,'手机:','') as com_mobile1,replace(com_url,'网址:','') as com_url1,replace(com_email,'邮箱:','') as com_email1,replace(com_contactor,'联系人:','') as com_contactor1,replace(com_emploies_nums,'公司人数:','') as com_emploies_nums1,replace(com_reg_capital,'注册资金:万','') as com_reg_capital1,replace(com_type,'经济类型:','') as com_type1,replace(com_product,'公司产品:','') as com_product1,replace(com_desc,'公司简介:','') as com_desc1from s_socom_data as a

2.5、表输出

表输出设置注意事项

注意事项:

① 涉及爬虫增量操作 不要勾选裁剪表选项

②数据连接问题 选择表输出中表所在的数据库

③字段映射问题 确保数据流中的字段和物理表的字段数量一致 对应一致

三、kettle转换etl2清洗

首先建表增加了4个字段 演示步骤在视频里

字段索引 没有提 索引算法建议用BTREE算法增强查询效率

主要针对etl1 生成的新的com_industry进行字段拆分 清洗

3.1.kettle文件名:trans_etl2_socom_data

3.2.包括控件:表输入>>>表输出

3.3.数据流方向:etl1_socom_data>>>>etl2_socom_data

注意事项:

① 涉及爬虫增量操作 不要勾选裁剪表选项

②数据连接问题 选择表输出中表所在的数据库

③字段映射问题 确保数据流中的字段和物理表的字段数量一致 对应一致

kettle转换2截图

3.4、SQL脚本 对com_industry进行拆分 完成所有字段清洗 注册资金字段时间关系没有进行细致拆解 调整代码即可

select a.*,case #行业为''的值 置为空when length(com_industry)=0 then null#其他的取第一个-分隔符之前else substring_index(com_industry,'-',1) end as com_industry1,case when length(com_industry)-length(replace(com_industry,'-',''))=0 then null#'交通运输、仓储和邮政业-' 这种值 行业2 也置为nullwhen length(com_industry)-length(replace(com_industry,'-',''))=1 and length(substring_index(com_industry,'-',-1))=0 then nullwhen length(com_industry)-length(replace(com_industry,'-',''))=1 then substring_index(com_industry,'-',-1)else substring_index(substring_index(com_industry,'-',2),'-',-1)end as com_industry2,case when length(com_industry)-length(replace(com_industry,'-',''))<=1 then nullwhen length(com_industry)-length(replace(com_industry,'-',''))=2 then substring_index(com_industry,'-',-1)else substring_index(substring_index(com_industry,'-',3),'-',-1)end as com_industry3,case when length(com_industry)-length(replace(com_industry,'-',''))<=2 then nullelse substring_index(com_industry,'-',-1)end as com_industry4from etl1_socom_data as a

四、清洗效果质量检查

4.1爬虫数据源数据和网站数据是否相符

如果本身工作是爬虫和数据处理在一起处理,抓取的时候其实已经判断,此步骤可以省略,如果对接上游爬虫同事,这一步首先判断,不然清洗也是无用功,一般都要求爬虫同事存储请求的url便于后面数据处理查看数据质量

4.2计算爬虫数据源和各etl清洗数据表数据量

注:SQL脚本中没有经过聚合过滤 3个表数据量应相等

4.2.1、sql查询 下面表我是在同一数据库中 如果不在同一数据库 from 后面应加上表所在的数据库名称

不推荐数据量大的时候使用

select count(1) from s_socom_dataunion allselect count(1) from etl1_socom_dataunion allselect count(1) from etl2_socom_data

4.2.2 根据 kettle转换执行完毕以后 表输出总量对比

kettle表输出总数据量

4.3查看etl清洗质量

确保前两个步骤已经无误,数据处理负责的etl清洗工作自查开始 针对数据源清洗的字段 写脚本检查 socom网站主要是对地区 和行业进行了清洗 对其他字段做了替换多余字段处理 ,因此采取脚本检查,

找到page_url和网站数据进行核查

where里面这样写便于查看某个字段的清洗情况

select * from etl2_socom_data where com_district is null and length(com_industry)-length(replace(com_industry,'-',''))=3

http://www.socom.cn/company/7320798.html此页面数据和etl2_socom_data表最终清洗数据对比

网站页面数据

etl2_socom_data表数据

清洗工作完成。

以上这篇基于python爬虫数据处理(详解)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。


  • 上一条:
    python+requests+unittest API接口测试实例(详解)
    下一条:
    python实现稀疏矩阵示例代码
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go语言中实现字符串可逆性压缩及解压缩功能(0个评论)
    • 使用go + gin + jwt + qrcode实现网站生成登录二维码在app中扫码登录功能(0个评论)
    • 在windows10中升级go版本至1.24后LiteIDE的Ctrl+左击无法跳转问题解决方案(0个评论)
    • 智能合约Solidity学习CryptoZombie第四课:僵尸作战系统(0个评论)
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客