侯体宗的博客
  • 首页
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

Python标准库之collections包的使用教程

Python  /  管理员 发布于 7年前   403

前言

Python为我们提供了4种基本的数据结构:list, tuple, dict, set,但是在处理数据量较大的情形的时候,这4种数据结构就明显过于单一了,比如list作为数组在某些情形插入的效率会比较低,有时候我们也需要维护一个有序的dict。所以这个时候我们就要用到Python标准库为我们提供的collections包了,它提供了多个有用的集合类,熟练掌握这些集合类,不仅可以让我们让写出的代码更加Pythonic,也可以提高我们程序的运行效率。

defaultdict

defaultdict(default_factory)在普通的dict之上添加了default_factory,使得key不存在时会自动生成相应类型的value,default_factory参数可以指定成list, set, int等各种合法类型。

我们现在有下面这样一组list,虽然我们有5组数据,但是仔细观察后发现其实我们只有3种color,但是每一种color对应多个值。现在我们想要将这个list转换成一个dict,这个dict的key对应一种color,dict的value设置为一个list存放color对应的多个值。我们可以使用defaultdict(list)来解决这个问题。

>>> from collections import defaultdict>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)]>>> d = defaultdict(list)>>> for k, v in s:...  d[k].append(v)...>>> sorted(d.items())[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

以上等价于:

>>> d = {}>>> for k, v in s:...  d.setdefault(k, []).append(v)...>>> sorted(d.items())[('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

如果我们不希望含有重复的元素,可以考虑使用defaultdict(set) 。set相比list的不同之处在于set中不允许存在相同的元素。

>>> from collections import defaultdict>>> s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)]>>> d = defaultdict(set)>>> for k, v in s:...  d[k].add(v)...>>> sorted(d.items())[('blue', {2, 4}), ('red', {1, 3})]

OrderedDict

Python3.6之前的dict是无序的,但是在某些情形我们需要保持dict的有序性,这个时候可以使用OrderedDict,它是dict的一个subclass,但是在dict的基础上保持了dict的有序型,下面我们来看一下使用方法。

>>> # regular unsorted dictionary>>> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}>>> # dictionary sorted by key>>> OrderedDict(sorted(d.items(), key=lambda t: t[0]))OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])>>> # dictionary sorted by value>>> OrderedDict(sorted(d.items(), key=lambda t: t[1]))OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])>>> # dictionary sorted by length of the key string>>> OrderedDict(sorted(d.items(), key=lambda t: len(t[0])))OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)])

使用popitem(last=True)方法可以让我们按照LIFO(先进后出)的顺序删除dict中的key-value,即删除最后一个插入的键值对,如果last=False就按照FIFO(先进先出)删除dict中key-value。

>>> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}>>> # dictionary sorted by key>>> d = OrderedDict(sorted(d.items(), key=lambda t: t[0]))>>> dOrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])>>> d.popitem()('pear', 1)>>> d.popitem(last=False)('apple', 4)

使用move_to_end(key, last=True)来改变有序的OrderedDict对象的key-value顺序,通过这个方法我们可以将排序好的OrderedDict对象中的任意一个key-value插入到字典的开头或者结尾。

>>> d = OrderedDict.fromkeys('abcde')>>> dOrderedDict([('a', None), ('b', None), ('c', None), ('d', None), ('e', None)])>>> d.move_to_end('b')>>> dOrderedDict([('a', None), ('c', None), ('d', None), ('e', None), ('b', None)])>>> ''.join(d.keys())'acdeb'>>> d.move_to_end('b', last=False)>>> ''.join(d.keys())'bacde'

deque

list存储数据的优势在于按索引查找元素会很快,但是插入和删除元素就很慢了,因为list是基于数组实现的。deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈,而且线程安全。

list只提供了append和pop方法来从list的尾部插入/删除元素,deque新增了appendleft/popleft等方法允许我们高效的在元素的开头来插入/删除元素。而且使用deque在队列两端append或pop元素的算法复杂度大约是O(1),但是对于list对象改变列表长度和数据位置的操作例如 pop(0)和insert(0, v)操作的复杂度高达O(n)。

>>> from collections import deque>>> dq = deque(range(10), maxlen=10)>>> dqdeque([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], maxlen=10)>>> dq.rotate(3)>>> dqdeque([7, 8, 9, 0, 1, 2, 3, 4, 5, 6], maxlen=10)>>> dq.rotate(-4)>>> dqdeque([1, 2, 3, 4, 5, 6, 7, 8, 9, 0], maxlen=10)>>> dq.appendleft(-1)>>> dqdeque([-1, 1, 2, 3, 4, 5, 6, 7, 8, 9], maxlen=10)>>> dq.extend([11, 22, 33])>>> dqdeque([3, 4, 5, 6, 7, 8, 9, 11, 22, 33], maxlen=10)>>> dq.extendleft([10, 20, 30, 40])>>> dqdeque([40, 30, 20, 10, 3, 4, 5, 6, 7, 8], maxlen=10)

Counter

Count用来统计相关元素的出现次数。

>>> from collections import Counter>>> ct = Counter('abracadabra')>>> ctCounter({'a': 5, 'r': 2, 'b': 2, 'd': 1, 'c': 1})>>> ct.update('aaaaazzz')>>> ctCounter({'a': 10, 'z': 3, 'r': 2, 'b': 2, 'd': 1, 'c': 1})>>> ct.most_common(2)[('a', 10), ('z', 3)]>>> ct.elements()<itertools.chain object at 0x7fbaad4b44e0>

namedtuple

使用namedtuple(typename, field_names)命名tuple中的元素来使程序更具可读性。

>>> from collections import namedtuple>>> City = namedtuple('City', 'name country population coordinates')>>> tokyo = City('Tokyo', 'JP', 36.933, (35.689722, 139.691667))>>> tokyoCity(name='Tokyo', country='JP', population=36.933, coordinates=(35.689722, 139.691667))>>> tokyo.population36.933>>> tokyo.coordinates(35.689722, 139.691667)>>> tokyo[1]'JP'
>>> City._fields('name', 'country', 'population', 'coordinates')>>> LatLong = namedtuple('LatLong', 'lat long')>>> delhi_data = ('Delhi NCR', 'IN', 21.935, LatLong(28.613889, 77.208889))>>> delhi = City._make(delhi_data)>>> delhi._asdict()OrderedDict([('name', 'Delhi NCR'), ('country', 'IN'), ('population', 21.935),   ('coordinates', LatLong(lat=28.613889, long=77.208889))])>>> for key, value in delhi._asdict().items():  print(key + ':', value)name: Delhi NCRcountry: INpopulation: 21.935coordinates: LatLong(lat=28.613889, long=77.208889)

ChainMap

ChainMap可以用来合并多个字典。

>>> from collections import ChainMap>>> d = ChainMap({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'})>>> d['lion'] = 'orange'>>> d['snake'] = 'red'>>> dChainMap({'lion': 'orange', 'zebra': 'black', 'snake': 'red'},   {'elephant': 'blue'}, {'lion': 'yellow'})
>>> del d['lion']>>> del d['elephant']Traceback (most recent call last): File "/usr/lib/python3.5/collections/__init__.py", line 929, in __delitem__ del self.maps[0][key]KeyError: 'elephant'During handling of the above exception, another exception occurred:Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/lib/python3.5/collections/__init__.py", line 931, in __delitem__ raise KeyError('Key not found in the first mapping: {!r}'.format(key))KeyError: "Key not found in the first mapping: 'elephant'"

从上面del['elephant']的报错信息可以看出来,对于改变键值的操作ChainMap只会在第一个字典self.maps[0][key]进行查找,新增加的键值对也都会加入第一个字典,我们来改进一下ChainMap解决这个问题:

class DeepChainMap(ChainMap): 'Variant of ChainMap that allows direct updates to inner scopes' def __setitem__(self, key, value):  for mapping in self.maps:   if key in mapping:    mapping[key] = value    return  self.maps[0][key] = value def __delitem__(self, key):  for mapping in self.maps:   if key in mapping:    del mapping[key]    return  raise KeyError(key)>>> d = DeepChainMap({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'})>>> d['lion'] = 'orange'   # update an existing key two levels down>>> d['snake'] = 'red'   # new keys get added to the topmost dict>>> del d['elephant']   # remove an existing key one level downDeepChainMap({'zebra': 'black', 'snake': 'red'}, {}, {'lion': 'orange'})

可以使用new_child来deepcopy一个ChainMap:

>>> from collections import ChainMap>>> a = {'a': 'A', 'c': 'C'}>>> b = {'b': 'B', 'c': 'D'}>>> m = ChainMap({'a': 'A', 'c': 'C'}, {'b': 'B', 'c': 'D'})>>> mChainMap({'a': 'A', 'c': 'C'}, {'b': 'B', 'c': 'D'})>>> m['c']'C'>>> m.maps[{'c': 'C', 'a': 'A'}, {'c': 'D', 'b': 'B'}]>>> a['c'] = 'E'>>> m['c']'E'>>> mChainMap({'c': 'E', 'a': 'A'}, {'c': 'D', 'b': 'B'})
>>> m2 = m.new_child()>>> m2['c'] = 'f'>>> m2ChainMap({'c': 'f'}, {'c': 'E', 'a': 'A'}, {'c': 'D', 'b': 'B'})>>> mChainMap({'c': 'E', 'a': 'A'}, {'c': 'D', 'b': 'B'})>>> m2.parentsChainMap({'c': 'E', 'a': 'A'}, {'c': 'D', 'b': 'B'})

UserDict

下面我们来改进一下字典,查询字典的时候将key转换为str的形式:

class StrKeyDict0(dict): def __missing__(self, key):  if isinstance(key, str):   raise KeyError(key)  return self[str(key)] def get(self, key, default=None):  try:   return self[key]  except KeyError:   return default def __contains__(self, key):  return key in self.keys() or str(key) in self.keys()

解释一下上面这段程序:

  • 在__missing__中isinstance(key, str)是必须要的,请思考一下为什么? 因为假设一个key不存在的话,这会造成infinite recursion,self[str(key)]会再次调用__getitem__。
  • __contains__也是必须实现的,因为k in d的时候会进行调用,但是注意即使查找失败它也不会调用__missing__。关于__contains__还有一个细节就是:我们并没有使用k in my_dict,因为str(key) in self的形式,因为这会造成递归调用__contains__。

这里还强调一点,在Python2.x中dict.keys()会返回一个list,这意味着k in my_list必须遍历list。在Python3.x中针对dict.keys()做了优化,性能更高,它会返回一个view如同set一样,详情参考官方文档。

上面这个例子可以用UserDict改写,并且将所有的key都以str的形式存储,而且这种写法更加常用简洁:

import collectionsclass StrKeyDict(collections.UserDict): def __missing__(self, key):  if isinstance(key, str):   raise KeyError(key)  return self[str(key)] def __contains__(self, key):  return str(key) in self.data def __setitem__(self, key, item):  self.data[str(key)] = item

UserDict是MutableMapping和Mapping的子类,它继承了MutableMapping.update和Mapping.get两个重要的方法,所以上面我们并没有重写get方法,可以在源码中看到它的实现和我们上面的实现是差不多的。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家的支持。


  • 上一条:
    用pickle存储Python的原生对象方法
    下一条:
    Mac中升级Python2.7到Python3.5步骤详解
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go语言中实现字符串可逆性压缩及解压缩功能(0个评论)
    • 使用go + gin + jwt + qrcode实现网站生成登录二维码在app中扫码登录功能(0个评论)
    • 在windows10中升级go版本至1.24后LiteIDE的Ctrl+左击无法跳转问题解决方案(0个评论)
    • 智能合约Solidity学习CryptoZombie第四课:僵尸作战系统(0个评论)
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客