侯体宗的博客
  • 首页
  • 人生(杂谈)
  • 技术
  • 关于我
  • 更多分类
    • 文件下载
    • 文字修仙
    • 中国象棋ai
    • 群聊
    • 九宫格抽奖
    • 拼图
    • 消消乐
    • 相册

Python实现的异步代理爬虫及代理池

Python  /  管理员 发布于 7年前   194

使用python asyncio实现了一个异步代理池,根据规则爬取代理网站上的免费代理,在验证其有效后存入redis中,定期扩展代理的数量并检验池中代理的有效性,移除失效的代理。同时用aiohttp实现了一个server,其他的程序可以通过访问相应的url来从代理池中获取代理。

源码

Github

环境

  • Python 3.5+
  • Redis
  • PhantomJS(可选)
  • Supervisord(可选)

因为代码中大量使用了asyncio的async和await语法,它们是在Python3.5中才提供的,所以最好使用Python3.5及以上的版本,我使用的是Python3.6。

依赖

  • redis
  • aiohttp
  • bs4
  • lxml
  • requests
  • selenium

selenium包主要是用来操作PhantomJS的。

下面来对代码进行说明。

1. 爬虫部分

核心代码

async def start(self): for rule in self._rules: parser = asyncio.ensure_future(self._parse_page(rule)) # 根据规则解析页面来获取代理 logger.debug('{0} crawler started'.format(rule.__rule_name__)) if not rule.use_phantomjs:  await page_download(ProxyCrawler._url_generator(rule), self._pages, self._stop_flag) # 爬取代理网站的页面 else:  await page_download_phantomjs(ProxyCrawler._url_generator(rule), self._pages,rule.phantomjs_load_flag, self._stop_flag) # 使用PhantomJS爬取 await self._pages.join() parser.cancel() logger.debug('{0} crawler finished'.format(rule.__rule_name__))

上面的核心代码实际上是一个用asyncio.Queue实现的生产-消费者模型,下面是该模型的一个简单实现:

import asynciofrom random import randomasync def produce(queue, n): for x in range(1, n + 1): print('produce ', x) await asyncio.sleep(random()) await queue.put(x) # 向queue中放入itemasync def consume(queue): while 1: item = await queue.get() # 等待从queue中获取item print('consume ', item) await asyncio.sleep(random()) queue.task_done() # 通知queue当前item处理完毕 async def run(n): queue = asyncio.Queue() consumer = asyncio.ensure_future(consume(queue)) await produce(queue, n) # 等待生产者结束 await queue.join() # 阻塞直到queue不为空 consumer.cancel() # 取消消费者任务,否则它会一直阻塞在get方法处def aio_queue_run(n): loop = asyncio.get_event_loop() try: loop.run_until_complete(run(n)) # 持续运行event loop直到任务run(n)结束 finally: loop.close()if __name__ == '__main__': aio_queue_run(5)

运行上面的代码,一种可能的输出如下:

produce 1produce 2consume 1produce 3produce 4consume 2produce 5consume 3consume 4consume 5

爬取页面

async def page_download(urls, pages, flag): url_generator = urls async with aiohttp.ClientSession() as session: for url in url_generator:  if flag.is_set():  break  await asyncio.sleep(uniform(delay - 0.5, delay + 1))  logger.debug('crawling proxy web page {0}'.format(url))  try:  async with session.get(url, headers=headers, timeout=10) as response:   page = await response.text()   parsed = html.fromstring(decode_html(page)) # 使用bs4来辅助lxml解码网页:http://lxml.de/elementsoup.html#Using only the encoding detection   await pages.put(parsed)   url_generator.send(parsed) # 根据当前页面来获取下一页的地址  except StopIteration:  break  except asyncio.TimeoutError:  logger.error('crawling {0} timeout'.format(url))  continue # TODO: use a proxy  except Exception as e:  logger.error(e)

使用aiohttp实现的网页爬取函数,大部分代理网站都可以使用上面的方法来爬取,对于使用js动态生成页面的网站可以使用selenium控制PhantomJS来爬取――本项目对爬虫的效率要求不高,代理网站的更新频率是有限的,不需要频繁的爬取,完全可以使用PhantomJS。

解析代理

最简单的莫过于用xpath来解析代理了,使用Chrome浏览器的话,直接通过右键就能获得选中的页面元素的xpath:

 

安装Chrome的扩展“XPath Helper”就可以直接在页面上运行和调试xpath,十分方便:

 

BeautifulSoup不支持xpath,使用lxml来解析页面,代码如下:

async def _parse_proxy(self, rule, page): ips = page.xpath(rule.ip_xpath) # 根据xpath解析得到list类型的ip地址集合 ports = page.xpath(rule.port_xpath) # 根据xpath解析得到list类型的ip地址集合 if not ips or not ports: logger.warning('{2} crawler could not get ip(len={0}) or port(len={1}), please check the xpaths or network'.  format(len(ips), len(ports), rule.__rule_name__)) return proxies = map(lambda x, y: '{0}:{1}'.format(x.text.strip(), y.text.strip()), ips, ports) if rule.filters: # 根据过滤字段来过滤代理,如“高匿”、“透明”等 filters = [] for i, ft in enumerate(rule.filters_xpath):  field = page.xpath(ft)  if not field:  logger.warning('{1} crawler could not get {0} field, please check the filter xpath'.   format(rule.filters[i], rule.__rule_name__))  continue  filters.append(map(lambda x: x.text.strip(), field)) filters = zip(*filters) selector = map(lambda x: x == rule.filters, filters) proxies = compress(proxies, selector)for proxy in proxies:await self._proxies.put(proxy) # 解析后的代理放入asyncio.Queue中

爬虫规则

网站爬取、代理解析、滤等等操作的规则都是由各个代理网站的规则类定义的,使用元类和基类来管理规则类。基类定义如下:

class CrawlerRuleBase(object, metaclass=CrawlerRuleMeta): start_url = None page_count = 0 urls_format = None next_page_xpath = None next_page_host = '' use_phantomjs = False phantomjs_load_flag = None filters = () ip_xpath = None port_xpath = None filters_xpath = ()

各个参数的含义如下:

start_url(必需)

爬虫的起始页面。

ip_xpath(必需)

爬取IP的xpath规则。

port_xpath(必需)

爬取端口号的xpath规则。

page_count

爬取的页面数量。

urls_format

页面地址的格式字符串,通过urls_format.format(start_url, n)来生成第n页的地址,这是比较常见的页面地址格式。

next_page_xpath,next_page_host

由xpath规则来获取下一页的url(常见的是相对路径),结合host得到下一页的地址:next_page_host + url。

use_phantomjs, phantomjs_load_flag

use_phantomjs用于标识爬取该网站是否需要使用PhantomJS,若使用,需定义phantomjs_load_flag(网页上的某个元素,str类型)作为PhantomJS页面加载完毕的标志。

filters

过滤字段集合,可迭代类型。用于过滤代理。

爬取各个过滤字段的xpath规则,与过滤字段按顺序一一对应。

元类CrawlerRuleMeta用于管理规则类的定义,如:如果定义use_phantomjs=True,则必须定义phantomjs_load_flag,否则会抛出异常,不在此赘述。

目前已经实现的规则有西刺代理、快代理、360代理、66代理和 秘密代理。新增规则类也很简单,通过继承CrawlerRuleBase来定义新的规则类YourRuleClass,放在proxypool/rules目录下,并在该目录下的__init__.py中添加from . import YourRuleClass(这样通过CrawlerRuleBase.__subclasses__()就可以获取全部的规则类了),重启正在运行的proxy pool即可应用新的规则。

2. 检验部分

免费的代理虽然多,但是可用的却不多,所以爬取到代理后需要对其进行检验,有效的代理才能放入代理池中,而代理也是有时效性的,还要定期对池中的代理进行检验,及时移除失效的代理。

这部分就很简单了,使用aiohttp通过代理来访问某个网站,若超时,则说明代理无效。

async def validate(self, proxies): logger.debug('validator started') while 1: proxy = await proxies.get() async with aiohttp.ClientSession() as session:  try:  real_proxy = 'http://' + proxy  async with session.get(self.validate_url, proxy=real_proxy, timeout=validate_timeout) as resp:   self._conn.put(proxy)  except Exception as e:  logger.error(e) proxies.task_done()

3. server部分

使用aiohttp实现了一个web server,启动后,访问http://host:port即可显示主页:

  • 访问http://host:port/get来从代理池获取1个代理,如:'127.0.0.1:1080';
  • 访问http://host:port/get/n来从代理池获取n个代理,如:"['127.0.0.1:1080', '127.0.0.1:443', '127.0.0.1:80']";
  • 访问http://host:port/count来获取代理池的容量,如:'42'。

因为主页是一个静态的html页面,为避免每来一个访问主页的请求都要打开、读取以及关闭该html文件的开销,将其缓存到了redis中,通过html文件的修改时间来判断其是否被修改过,如果修改时间与redis缓存的修改时间不同,则认为html文件被修改了,则重新读取文件,并更新缓存,否则从redis中获取主页的内容。

返回代理是通过aiohttp.web.Response(text=ip.decode('utf-8'))实现的,text要求str类型,而从redis中获取到的是bytes类型,需要进行转换。返回的多个代理,使用eval即可转换为list类型。

返回主页则不同,是通过aiohttp.web.Response(body=main_page_cache, content_type='text/html') ,这里body要求的是bytes类型,直接将从redis获取的缓存返回即可,conten_type='text/html'必不可少,否则无法通过浏览器加载主页,而是会将主页下载下来――在运行官方文档中的示例代码的时候也要注意这点,那些示例代码基本上都没有设置content_type。

这部分不复杂,注意上面提到的几点,而关于主页使用的静态资源文件的路径,可以参考之前的博客《aiohttp之添加静态资源路径》。

4. 运行

将整个代理池的功能分成了3个独立的部分:

proxypool

定期检查代理池容量,若低于下限则启动代理爬虫并对代理检验,通过检验的爬虫放入代理池,达到规定的数量则停止爬虫。

proxyvalidator

用于定期检验代理池中的代理,移除失效代理。

proxyserver

启动server。

这3个独立的任务通过3个进程来运行,在Linux下可以使用supervisod来=管理这些进程,下面是supervisord的配置文件示例:

; supervisord.conf[unix_http_server]file=/tmp/supervisor.sock [inet_http_server]  port=127.0.0.1:9001 [supervisord]logfile=/tmp/supervisord.log logfile_maxbytes=5MB logfile_backups=10  loglevel=debug  pidfile=/tmp/supervisord.pid nodaemon=false  minfds=1024   minprocs=200   [rpcinterface:supervisor]supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface[supervisorctl]serverurl=unix:///tmp/supervisor.sock[program:proxyPool]command=python /path/to/ProxyPool/run_proxypool.py  redirect_stderr=truestdout_logfile=NONE[program:proxyValidator]command=python /path/to/ProxyPool/run_proxyvalidator.pyredirect_stderr=true  stdout_logfile=NONE[program:proxyServer]command=python /path/to/ProxyPool/run_proxyserver.pyautostart=falseredirect_stderr=true  stdout_logfile=NONE

因为项目自身已经配置了日志,所以这里就不需要再用supervisord捕获stdout和stderr了。通过supervisord -c supervisord.conf启动supervisord,proxyPool和proxyServer则会随之自动启动,proxyServer需要手动启动,访问http://127.0.0.1:9001即可通过网页来管理这3个进程了:

supervisod的官方文档说目前(版本3.3.1)不支持python3,但是我在使用过程中没有发现什么问题,可能也是由于我并没有使用supervisord的复杂功能,只是把它当作了一个简单的进程状态监控和启停工具了。

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,同时也希望多多支持!


  • 上一条:
    Python自动生产表情包
    下一条:
    Python 专题一 函数的基础知识
  • 昵称:

    邮箱:

    0条评论 (评论内容有缓存机制,请悉知!)
    最新最热
    • 分类目录
    • 人生(杂谈)
    • 技术
    • linux
    • Java
    • php
    • 框架(架构)
    • 前端
    • ThinkPHP
    • 数据库
    • 微信(小程序)
    • Laravel
    • Redis
    • Docker
    • Go
    • swoole
    • Windows
    • Python
    • 苹果(mac/ios)
    • 相关文章
    • 在python语言中Flask框架的学习及简单功能示例(0个评论)
    • 在Python语言中实现GUI全屏倒计时代码示例(0个评论)
    • Python + zipfile库实现zip文件解压自动化脚本示例(0个评论)
    • python爬虫BeautifulSoup快速抓取网站图片(1个评论)
    • vscode 配置 python3开发环境的方法(0个评论)
    • 近期文章
    • 在go语言中实现字符串可逆性压缩及解压缩功能(0个评论)
    • 使用go + gin + jwt + qrcode实现网站生成登录二维码在app中扫码登录功能(0个评论)
    • 在windows10中升级go版本至1.24后LiteIDE的Ctrl+左击无法跳转问题解决方案(0个评论)
    • 智能合约Solidity学习CryptoZombie第四课:僵尸作战系统(0个评论)
    • 智能合约Solidity学习CryptoZombie第三课:组建僵尸军队(高级Solidity理论)(0个评论)
    • 智能合约Solidity学习CryptoZombie第二课:让你的僵尸猎食(0个评论)
    • 智能合约Solidity学习CryptoZombie第一课:生成一只你的僵尸(0个评论)
    • 在go中实现一个常用的先进先出的缓存淘汰算法示例代码(0个评论)
    • 在go+gin中使用"github.com/skip2/go-qrcode"实现url转二维码功能(0个评论)
    • 在go语言中使用api.geonames.org接口实现根据国际邮政编码获取地址信息功能(1个评论)
    • 近期评论
    • 122 在

      学历:一种延缓就业设计,生活需求下的权衡之选中评论 工作几年后,报名考研了,到现在还没认真学习备考,迷茫中。作为一名北漂互联网打工人..
    • 123 在

      Clash for Windows作者删库跑路了,github已404中评论 按理说只要你在国内,所有的流量进出都在监控范围内,不管你怎么隐藏也没用,想搞你分..
    • 原梓番博客 在

      在Laravel框架中使用模型Model分表最简单的方法中评论 好久好久都没看友情链接申请了,今天刚看,已经添加。..
    • 博主 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 @1111老铁这个不行了,可以看看近期评论的其他文章..
    • 1111 在

      佛跳墙vpn软件不会用?上不了网?佛跳墙vpn常见问题以及解决办法中评论 网站不能打开,博主百忙中能否发个APP下载链接,佛跳墙或极光..
    • 2016-10
    • 2016-11
    • 2018-04
    • 2020-03
    • 2020-04
    • 2020-05
    • 2020-06
    • 2022-01
    • 2023-07
    • 2023-10
    Top

    Copyright·© 2019 侯体宗版权所有· 粤ICP备20027696号 PHP交流群

    侯体宗的博客